These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33151055)

  • 1. A Nanoparticle-DNA Assembled Nanorobot Powered by Charge-Tunable Quad-Nanopore System.
    Si W; Yu M; Wu G; Chen C; Sha J; Zhang Y; Chen Y
    ACS Nano; 2020 Nov; 14(11):15349-15360. PubMed ID: 33151055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding Manipulation of DNA-Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores.
    Si W; Zhu Z; Wu G; Zhang Y; Chen Y; Sha J
    Small Methods; 2022 Aug; 6(8):e2200318. PubMed ID: 35656741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving dynamics of a nanorobot with three DNA legs on nanopore-based tracks.
    Sun LZ; Ying YJ
    Nanoscale; 2023 Oct; 15(38):15794-15809. PubMed ID: 37740362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore actuation of a DNA-tracked nanovehicle.
    Si W; Lin X; Wang L; Wu G; Zhang Y; Chen Y; Sha J
    Nanoscale; 2023 Sep; 15(35):14659-14668. PubMed ID: 37622615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slip-Coupled Electroosmosis and Electrophoresis Dictate DNA Translocation Speed in Solid-State Nanopores.
    Ahmadi E; Sadeghi A; Chakraborty S
    Langmuir; 2023 Sep; 39(35):12292-12301. PubMed ID: 37603825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region.
    Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M
    Adv Mater; 2024 Aug; 36(33):e2401761. PubMed ID: 38860821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Capture and Manipulation of DNA through Double Charged Nanopores.
    Lin X; Chen H; Wu G; Zhao J; Zhang Y; Sha J; Si W
    J Phys Chem Lett; 2024 May; 15(19):5120-5129. PubMed ID: 38709198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore.
    Yu YS; Ren Q; Tan RR; Ding HM
    Phys Chem Chem Phys; 2023 Oct; 25(41):28034-28042. PubMed ID: 37846110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic particle translocation through a nanopore containing a floating electrode.
    Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S
    Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage.
    Lin CY; Turker Acar E; Polster JW; Lin K; Hsu JP; Siwy ZS
    ACS Nano; 2019 Sep; 13(9):9868-9879. PubMed ID: 31348640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.
    Shankla M; Aksimentiev A
    Nat Commun; 2014 Oct; 5():5171. PubMed ID: 25296960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise control of CNT-DNA assembled nanomotor using oppositely charged dual nanopores.
    Ma C; Xu W; Liu W; Xu C; Si W; Sha J
    Nanoscale; 2023 Jul; 15(26):11052-11063. PubMed ID: 37350160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field effect regulation of DNA translocation through a nanopore.
    Ai Y; Liu J; Zhang B; Qian S
    Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of structured single-strand DNA via solid-state nanopore.
    Liu SC; Li Q; Ying YL; Long YT
    Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.