These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33151100)

  • 1. A Systematic Literature Review of the Successors of "NeuroEvolution of Augmenting Topologies".
    Papavasileiou E; Cornelis J; Jansen B
    Evol Comput; 2021; 29(1):1-73. PubMed ID: 33151100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous evolution of topographic regularities in artificial neural networks.
    Gauci J; Stanley KO
    Neural Comput; 2010 Jul; 22(7):1860-98. PubMed ID: 20235822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving neural networks through augmenting topologies.
    Stanley KO; Miikkulainen R
    Evol Comput; 2002; 10(2):99-127. PubMed ID: 12180173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroevolution and complexifying genetic architectures for memory and control tasks.
    Inden B
    Theory Biosci; 2008 Jun; 127(2):187-94. PubMed ID: 18415134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced hypercube-based encoding for evolving the placement, density, and connectivity of neurons.
    Risi S; Stanley KO
    Artif Life; 2012; 18(4):331-63. PubMed ID: 22938563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hypercube-based encoding for evolving large-scale neural networks.
    Stanley KO; D'Ambrosio DB; Gauci J
    Artif Life; 2009; 15(2):185-212. PubMed ID: 19199382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Network Topology in Computer-Aided Detection Schemes Using Phased Searching with NEAT in a Time-Scaled Framework.
    Tan M; Pu J; Zheng B
    Cancer Inform; 2014; 13(Suppl 1):17-27. PubMed ID: 25392680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phased searching with NEAT in a time-scaled framework: experiments on a computer-aided detection system for lung nodules.
    Tan M; Deklerck R; Cornelis J; Jansen B
    Artif Intell Med; 2013 Nov; 59(3):157-67. PubMed ID: 24028824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroevolution as a tool for microarray gene expression pattern identification in cancer research.
    Grisci BI; Feltes BC; Dorn M
    J Biomed Inform; 2019 Jan; 89():122-133. PubMed ID: 30521855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NEAT-FLEX: Predicting the conformational flexibility of amino acids using neuroevolution of augmenting topologies.
    Grisci B; Dorn M
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750009. PubMed ID: 28403668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picbreeder: a case study in collaborative evolutionary exploration of design space.
    Secretan J; Beato N; D'Ambrosio DB; Rodriguez A; Campbell A; Folsom-Kovarik JT; Stanley KO
    Evol Comput; 2011; 19(3):373-403. PubMed ID: 20964537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular Grammatical Evolution for the Generation of Artificial Neural Networks.
    Soltanian K; Ebnenasir A; Afsharchi M
    Evol Comput; 2022 Jun; 30(2):291-327. PubMed ID: 34878521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized Hybrid Education Framework Based on Neuroevolution Methodologies.
    Yin W
    Comput Intell Neurosci; 2022; 2022():6925668. PubMed ID: 35634078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding Neuroevolution with Structural Objectives.
    Ellefsen KO; Huizinga J; Torresen J
    Evol Comput; 2020; 28(1):115-140. PubMed ID: 30767665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving neural fields for problems with large input and output spaces.
    Inden B; Jin Y; Haschke R; Ritter H
    Neural Netw; 2012 Apr; 28():24-39. PubMed ID: 22391232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrum-Diverse Neuroevolution With Unified Neural Models.
    Vargas DV; Murata J
    IEEE Trans Neural Netw Learn Syst; 2017 Aug; 28(8):1759-1773. PubMed ID: 28113564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving neural networks to follow trajectories of arbitrary complexity.
    Inden B; Jost J
    Neural Netw; 2019 Aug; 116():224-236. PubMed ID: 31121420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust optimization through neuroevolution.
    Pagliuca P; Nolfi S
    PLoS One; 2019; 14(3):e0213193. PubMed ID: 30822316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward nonlinear local reinforcement learning rules through neuroevolution.
    Vassiliades V; Christodoulou C
    Neural Comput; 2013 Nov; 25(11):3020-43. PubMed ID: 24001343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between neuroevolution and gradient descent.
    Whitelam S; Selin V; Park SW; Tamblyn I
    Nat Commun; 2021 Nov; 12(1):6317. PubMed ID: 34728632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.