BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33151570)

  • 1. Synthesis, characterization, and in vitro evaluation of the starch-based α-amylase responsive hydrogels.
    Davoodi-Monfared P; Akbari-Birgani S; Mohammadi S; Kazemi F; Nikfarjam N; Nikbakht M; Mousavi SA
    J Cell Physiol; 2021 May; 236(5):4066-4075. PubMed ID: 33151570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell.
    Bayramoglu G; Gozen D; Ersoy G; Ozalp VC; Akcali KC; Arica MY
    J Biomater Sci Polym Ed; 2014; 25(7):657-78. PubMed ID: 24580096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on alpha-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin.
    Bajpai AK; Shrivastava J
    J Mater Sci Mater Med; 2007 May; 18(5):765-77. PubMed ID: 17143735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.
    Wang SS; Hsieh PL; Chen PS; Chen YT; Jan JS
    Colloids Surf B Biointerfaces; 2013 Nov; 111():423-31. PubMed ID: 23872465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels.
    Sun T; Zhu C; Xu J
    Soft Matter; 2018 Feb; 14(6):921-926. PubMed ID: 29309083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stimuli-responsive hydrogel for doxorubicin delivery.
    Dadsetan M; Liu Z; Pumberger M; Giraldo CV; Ruesink T; Lu L; Yaszemski MJ
    Biomaterials; 2010 Nov; 31(31):8051-62. PubMed ID: 20696470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinate bonding strategy for molecularly imprinted hydrogels: toward pH-responsive doxorubicin delivery.
    Zhang Q; Zhang L; Wang P; Du S
    J Pharm Sci; 2014 Feb; 103(2):643-51. PubMed ID: 24395706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of an MMP-9-responsive hydrogel for vital pulp therapy.
    Liu H; Yu J; Hieawy A; Hu Z; Tay FR; Shen Y
    J Dent; 2024 Jul; 146():105020. PubMed ID: 38670329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.
    Gong C; Shan M; Li B; Wu G
    J Biomed Mater Res A; 2017 Sep; 105(9):2451-2460. PubMed ID: 28481038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium.
    Gull N; Khan SM; Butt OM; Islam A; Shah A; Jabeen S; Khan SU; Khan A; Khan RU; Butt MTZ
    Int J Biol Macromol; 2020 Nov; 162():175-187. PubMed ID: 32562726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic and spectroscopic characterization of rice and corn starch.
    Govindaraju I; Pallen S; Umashankar S; Mal SS; Kaniyala Melanthota S; Mahato DR; Zhuo GY; Mahato KK; Mazumder N
    Microsc Res Tech; 2020 May; 83(5):490-498. PubMed ID: 32319189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel porous starch/alginate hydrogels for controlled insulin release with dual response to pH and amylase.
    Chen Y; Song H; Huang K; Guan X
    Food Funct; 2021 Oct; 12(19):9165-9177. PubMed ID: 34606530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system.
    Massoumi B; Mozaffari Z; Jaymand M
    Int J Biol Macromol; 2018 Oct; 117():418-426. PubMed ID: 29857100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release.
    Pan YJ; Chen YY; Wang DR; Wei C; Guo J; Lu DR; Chu CC; Wang CC
    Biomaterials; 2012 Sep; 33(27):6570-9. PubMed ID: 22704845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin.
    Zu Y; Zhang Y; Zhao X; Shan C; Zu S; Wang K; Li Y; Ge Y
    Int J Biol Macromol; 2012 Jan; 50(1):82-7. PubMed ID: 22020189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocleaning of starch glues from textiles by means of α-amylase-based treatments.
    Tortora M; Gherardi F; Ferrari E; Colston B
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5361-5370. PubMed ID: 32322945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleaning of paper artworks: development of an efficient gel-based material able to remove starch paste.
    Mazzuca C; Micheli L; Cervelli E; Basoli F; Cencetti C; Coviello T; Iannuccelli S; Sotgiu S; Palleschi A
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16519-28. PubMed ID: 25216156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N,N-diethylacrylamide-co-methacrylic acid).
    Wei W; Qi X; Liu Y; Li J; Hu X; Zuo G; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1182-92. PubMed ID: 26590634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation.
    Khan S; Anwar N
    Carbohydr Polym; 2021 Apr; 257():117617. PubMed ID: 33541645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.
    Barbucci R; Giani G; Fedi S; Bottari S; Casolaro M
    Acta Biomater; 2012 Dec; 8(12):4244-52. PubMed ID: 22982321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.