These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33151665)

  • 1. Efficient Direct Recycling of Degraded LiMn
    Gao H; Yan Q; Xu P; Liu H; Li M; Liu P; Luo J; Chen Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51546-51554. PubMed ID: 33151665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topotactic Transformation of Surface Structure Enabling Direct Regeneration of Spent Lithium-Ion Battery Cathodes.
    Jia K; Wang J; Zhuang Z; Piao Z; Zhang M; Liang Z; Ji G; Ma J; Ji H; Yao W; Zhou G; Cheng HM
    J Am Chem Soc; 2023 Apr; 145(13):7288-7300. PubMed ID: 36876987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential Extraction of Lithium from Spent Cathodes and the Regeneration of Layered Oxides for Li/Na-Ion Batteries.
    Hu X; Xu C; Li X; Zhang P; Rong X; Yang C; Jian Z; Liu H; Hu YS; Zhao J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24255-24264. PubMed ID: 35603942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flux upcycling of spent NMC 111 to nickel-rich NMC cathodes in reciprocal ternary molten salts.
    Wang T; Luo H; Fan J; Thapaliya BP; Bai Y; Belharouak I; Dai S
    iScience; 2022 Feb; 25(2):103801. PubMed ID: 35243215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benign Recycling of Spent Batteries towards All-Solid-State Lithium Batteries.
    Wang YY; Diao WY; Fan CY; Wu XL; Zhang JP
    Chemistry; 2019 Jul; 25(38):8975-8981. PubMed ID: 31021424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptable Eutectic Salt for the Direct Recycling of Highly Degraded Layer Cathodes.
    Ma J; Wang J; Jia K; Liang Z; Ji G; Zhuang Z; Zhou G; Cheng HM
    J Am Chem Soc; 2022 Nov; 144(44):20306-20314. PubMed ID: 36228162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries.
    Tao Y; Rahn CD; Archer LA; You F
    Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
    Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J
    J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond.
    Larouche F; Tedjar F; Amouzegar K; Houlachi G; Bouchard P; Demopoulos GP; Zaghib K
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt.
    Ji G; Wang J; Liang Z; Jia K; Ma J; Zhuang Z; Zhou G; Cheng HM
    Nat Commun; 2023 Feb; 14(1):584. PubMed ID: 36737610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery.
    Liu Y; Yu H; Wang Y; Tang D; Qiu W; Li W; Li J
    Waste Manag; 2022 Apr; 143():186-194. PubMed ID: 35272201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.