These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33151693)

  • 1. Toward Accurate Predictions of Atomic Properties via Quantum Mechanics Descriptors Augmented Graph Convolutional Neural Network: Application of This Novel Approach in NMR Chemical Shifts Predictions.
    Gao P; Zhang J; Sun Y; Yu J
    J Phys Chem Lett; 2020 Nov; 11(22):9812-9818. PubMed ID: 33151693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN).
    Gao P; Zhang J; Qiu H; Zhao S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13242-13249. PubMed ID: 34086015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges.
    Wang J; Cao D; Tang C; Xu L; He Q; Yang B; Chen X; Sun H; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.
    Bratholm LA; Jensen JH
    Chem Sci; 2017 Mar; 8(3):2061-2072. PubMed ID: 28451325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated fragmentation quantum mechanical calculation of
    Shi M; Jin X; Wan Z; He X
    J Chem Phys; 2021 Feb; 154(6):064502. PubMed ID: 33588539
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Gao P; Wang X; Huang Z; Yu H
    ACS Omega; 2019 Jul; 4(7):12385-12392. PubMed ID: 31460356
    [No Abstract]   [Full Text] [Related]  

  • 11. Accurate Prediction of NMR Chemical Shifts in Macromolecular and Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method.
    Zhao D; Song R; Li W; Ma J; Dong H; Li S
    J Chem Theory Comput; 2017 Nov; 13(11):5231-5239. PubMed ID: 28976772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Fragmentation QM/MM Calculation of NMR Chemical Shifts for Protein-Ligand Complexes.
    Jin X; Zhu T; Zhang JZH; He X
    Front Chem; 2018; 6():150. PubMed ID: 29868556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations.
    Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids.
    Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE
    Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.
    Rorick A; Michael MA; Yang L; Zhang Y
    J Phys Chem B; 2015 Sep; 119(35):11618-25. PubMed ID: 26274812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using neural networks for (13)c NMR chemical shift prediction-comparison with traditional methods.
    Meiler J; Maier W; Will M; Meusinger R
    J Magn Reson; 2002 Aug; 157(2):242-52. PubMed ID: 12323143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Elucidating Structure-Spectra Relationships in Rhamnogalacturonan II: Computational Protocols for Accurate
    Bharadwaj VS; Westawker LP; Crowley MF
    Front Mol Biosci; 2021; 8():756219. PubMed ID: 35141275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.