These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33151697)
1. Disparities of Single-Particle Growth Rates in Buried Versus Exposed Ritonavir Crystals within Amorphous Solid Dispersions. Griffin SR; Takanti N; Sarkar S; Song Z; Vogt AD; Danzer GD; Simpson GJ Mol Pharm; 2020 Dec; 17(12):4564-4571. PubMed ID: 33151697 [TBL] [Abstract][Full Text] [Related]
2. In Situ Crystal Growth Rate Distributions of Active Pharmaceutical Ingredients. Sarkar S; Song Z; Griffin SR; Takanti N; Vogt AD; Ruggles A; Danzer GD; Simpson GJ Mol Pharm; 2020 Mar; 17(3):769-776. PubMed ID: 31769985 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Indulkar AS; Lou X; Zhang GGZ; Taylor LS Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846 [TBL] [Abstract][Full Text] [Related]
4. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. Purohit HS; Taylor LS Pharm Res; 2017 Dec; 34(12):2842-2861. PubMed ID: 28956218 [TBL] [Abstract][Full Text] [Related]
5. Direct Visualization of Drug-Polymer Phase Separation in Ritonavir-Copovidone Amorphous Solid Dispersions Using Shi C; Li L; Zhang GGZ; Borchardt TB Mol Pharm; 2019 Nov; 16(11):4751-4754. PubMed ID: 31553871 [TBL] [Abstract][Full Text] [Related]
6. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy. Song Z; Sarkar S; Vogt AD; Danzer GD; Smith CJ; Gualtieri EJ; Simpson GJ Anal Chem; 2018 Apr; 90(7):4406-4413. PubMed ID: 29505717 [TBL] [Abstract][Full Text] [Related]
7. Second harmonic generation microscopy as a tool for the early detection of crystallization in spray dried dispersions. Correa-Soto C; Trasi NS; Schmitt PD; Su Y; Liu Z; Miller E; Variankaval N; Marsac PJ; Simpson GJ; Taylor LS J Pharm Biomed Anal; 2017 Nov; 146():86-95. PubMed ID: 28866472 [TBL] [Abstract][Full Text] [Related]
8. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Schver GCRM; Lee PI Mol Pharm; 2018 May; 15(5):2017-2026. PubMed ID: 29601723 [TBL] [Abstract][Full Text] [Related]
9. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. Moseson DE; Corum ID; Lust A; Altman KJ; Hiew TN; Eren A; Nagy ZK; Taylor LS AAPS J; 2021 May; 23(4):69. PubMed ID: 34002256 [TBL] [Abstract][Full Text] [Related]
10. Combining crystalline and polymeric excipients in API solid dispersions - Opportunity or risk? Veith H; Wiechert F; Luebbert C; Sadowski G Eur J Pharm Biopharm; 2021 Jan; 158():323-335. PubMed ID: 33296719 [TBL] [Abstract][Full Text] [Related]
11. Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Indulkar AS; Lou X; Zhang GGZ; Taylor LS Pharm Res; 2022 Feb; 39(2):381-397. PubMed ID: 35169959 [TBL] [Abstract][Full Text] [Related]
12. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Sun DD; Ju TC; Lee PI Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic and kinetic evaluation of the impact of polymer excipients on storage stability of amorphous itraconazole. Zhang S; Lee TWY; Chow AHL Int J Pharm; 2019 Jan; 555():394-403. PubMed ID: 30513399 [TBL] [Abstract][Full Text] [Related]
14. Cellulose derivatives as effective recrystallization inhibitor for ternary ritonavir solid dispersions: In vitro-in vivo evaluation. Guan Q; Ma Q; Zhao Y; Jiang X; Zhang H; Liu M; Wang Z; Han J Carbohydr Polym; 2021 Dec; 273():118562. PubMed ID: 34560973 [TBL] [Abstract][Full Text] [Related]
15. Mutual Impact of Phase Separation/Crystallization and Water Sorption in Amorphous Solid Dispersions. Luebbert C; Wessner M; Sadowski G Mol Pharm; 2018 Feb; 15(2):669-678. PubMed ID: 29309155 [TBL] [Abstract][Full Text] [Related]
16. Effect of different seed crystals on the supersaturation state of ritonavir tablets prepared by hot-melt extrusion. Wu H; Wang Z; Zhao Y; Gao Y; Wang L; Zhang H; Bu R; Ding Z; Han J Eur J Pharm Sci; 2023 Jun; 185():106440. PubMed ID: 37004961 [TBL] [Abstract][Full Text] [Related]
17. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance. Chen H; Pui Y; Liu C; Chen Z; Su CC; Hageman M; Hussain M; Haskell R; Stefanski K; Foster K; Gudmundsson O; Qian F J Pharm Sci; 2018 Jan; 107(1):317-326. PubMed ID: 29107047 [TBL] [Abstract][Full Text] [Related]
18. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing. Theil F; Milsmann J; Anantharaman S; van Lishaut H Mol Pharm; 2018 May; 15(5):1870-1877. PubMed ID: 29648833 [TBL] [Abstract][Full Text] [Related]
19. In-situ determination of crystallization kinetics in ASDs via water sorption experiments. Luebbert C; Sadowski G Eur J Pharm Biopharm; 2018 Jun; 127():183-193. PubMed ID: 29477357 [TBL] [Abstract][Full Text] [Related]
20. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Chavan RB; Lodagekar A; Yadav B; Shastri NR Drug Deliv Transl Res; 2020 Aug; 10(4):903-918. PubMed ID: 32378174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]