These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33151943)

  • 1. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein.
    Girodat D; Pati AK; Terry DS; Blanchard SC; Sanbonmatsu KY
    PLoS Comput Biol; 2020 Nov; 16(11):e1008293. PubMed ID: 33151943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule FRET dynamics of molecular motors in an ABEL trap.
    Dienerowitz M; Howard JAL; Quinn SD; Dienerowitz F; Leake MC
    Methods; 2021 Sep; 193():96-106. PubMed ID: 33571667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism.
    Codina N; Hilton D; Zhang C; Chakroun N; Ahmad SS; Perkins SJ; Dalby PA
    J Mol Biol; 2019 Mar; 431(7):1409-1425. PubMed ID: 30776431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study.
    Shoura MJ; Ranatunga RJKU; Harris SA; Nielsen SO; Levene SD
    Biophys J; 2014 Aug; 107(3):700-710. PubMed ID: 25099809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing the use of molecular dynamics to simulate fluorophore motions and FRET.
    Deplazes E; Jayatilaka D; Corry B
    Phys Chem Chem Phys; 2011 Jun; 13(23):11045-54. PubMed ID: 21556410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying Structural Dynamics of Potassium Channels by Single-Molecule FRET.
    Wang S; Brettmann JB; Nichols CG
    Methods Mol Biol; 2018; 1684():163-180. PubMed ID: 29058191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential data assimilation for single-molecule FRET photon-counting data.
    Matsunaga Y; Kidera A; Sugita Y
    J Chem Phys; 2015 Jun; 142(21):214115. PubMed ID: 26049487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines.
    Barth A; Opanasyuk O; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Apr; 156(14):141501. PubMed ID: 35428384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal single-molecule FRET for protein conformational dynamics.
    Tan YW; Hanson JA; Chu JW; Yang H
    Methods Mol Biol; 2014; 1084():51-62. PubMed ID: 24061915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolution and smFRET Enhances Conformation Sampling and FRET Experimental Design in Tandem PDZ1-2 Proteins.
    Krishnamohan A; Hamilton GL; Goutam R; Sanabria H; Morcos F
    J Phys Chem B; 2023 Feb; 127(4):884-898. PubMed ID: 36693159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements.
    Klose D; Klare JP; Grohmann D; Kay CW; Werner F; Steinhoff HJ
    PLoS One; 2012; 7(6):e39492. PubMed ID: 22761805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Intramolecular Protein Conformational Dynamics Under Lipid Interaction Using smFRET and FCCS.
    Li P; Dai Y; Seeger M; Tan YW
    Methods Mol Biol; 2019; 1860():345-359. PubMed ID: 30317517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using photoinduced charge transfer reactions to study conformational dynamics of biopolymers at the single-molecule level.
    Neuweiler H; Sauer M
    Curr Pharm Biotechnol; 2004 Jun; 5(3):285-98. PubMed ID: 15180550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins.
    Segal M; Ingargiola A; Lerner E; Chung S; White JA; Streets A; Weiss S; Michalet X
    Methods; 2019 Oct; 169():21-45. PubMed ID: 31356875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins.
    Gauer JW; LeBlanc S; Hao P; Qiu R; Case BC; Sakato M; Hingorani MM; Erie DA; Weninger KR
    Methods Enzymol; 2016; 581():285-315. PubMed ID: 27793283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks.
    Opanasyuk O; Barth A; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Jul; 157(3):031501. PubMed ID: 35868918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in FRET for the study of protein interactions and dynamics.
    Okamoto K; Sako Y
    Curr Opin Struct Biol; 2017 Oct; 46():16-23. PubMed ID: 29800904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Protein Microenvironment Governs the Suitability of Labeling Sites for Single-Molecule Spectroscopy of RNP Complexes.
    Schmidt A; Altincekic N; Gustmann H; Wachtveitl J; Hengesbach M
    ACS Chem Biol; 2018 Sep; 13(9):2472-2483. PubMed ID: 30060648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET.
    Harborne SPD; Strauss J; Turku A; Watson MA; Tuma R; Harris SA; Goldman A
    Methods Enzymol; 2018; 607():93-130. PubMed ID: 30149870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.