BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33152357)

  • 1. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review.
    Soleymani Eil Bakhtiari S; Karbasi S; Toloue EB
    Int J Biol Macromol; 2021 Jan; 166():986-998. PubMed ID: 33152357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biocompatibility of electrospun poly(3-hydroxybutyrate) and its composites scaffolds for tissue engineering].
    Zharkova II; Staroverova OV; Voinova VV; Andreeva NV; Shushckevich AM; Sklyanchuk ED; Kuzmicheva GM; Bespalova AE; Akulina EA; Shaitan KV; Okhlov AA
    Biomed Khim; 2014; 60(5):553-60. PubMed ID: 25386884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering.
    Parvizifard M; Karbasi S
    Int J Biol Macromol; 2020 Jun; 152():645-662. PubMed ID: 32109478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxybutyrate (PHB) in nanoparticulate form improves physical and biological performance of scaffolds.
    Dhania S; Bernela M; Rani R; Parsad M; Kumar R; Thakur R
    Int J Biol Macromol; 2023 May; 236():123875. PubMed ID: 36870657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.
    Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering.
    Dariš B; Knez Ž
    Acta Pharm; 2020 Mar; 70(1):1-15. PubMed ID: 31677369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of bioglass nanoparticles on the biodegradation and biocompatibility of poly (3-hydroxybutyrate) scaffolds.
    Hajiali H; Hosseinalipour M; Karbasi S; Shokrgozar MA
    Int J Artif Organs; 2012 Nov; 35(11):1015-24. PubMed ID: 23065879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of the Core-Shell Structure of Poly(3-Hydroxybutyrate-4-Hydroxybutyrate) Nanofiber Scaffolds.
    Guo W; Yang Z; Qin X; Wei Y; Li C; Huang R; Zhou C; Wang H; Jin L; Wang H
    Biomed Res Int; 2021; 2021():8868431. PubMed ID: 33575351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications.
    Asl MA; Karbasi S; Beigi-Boroujeni S; Zamanlui Benisi S; Saeed M
    Int J Biol Macromol; 2021 Nov; 191():500-513. PubMed ID: 34555400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications.
    Mirmusavi MH; Zadehnajar P; Semnani D; Karbasi S; Fekrat F; Heidari F
    Int J Biol Macromol; 2019 Jul; 132():822-835. PubMed ID: 30940593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?
    Masaeli E; Morshed M; Rasekhian P; Karbasi S; Karbalaie K; Karamali F; Abedi D; Razavi S; Jafarian-Dehkordi A; Nasr-Esfahani MH; Baharvand H
    J Biomed Mater Res A; 2012 Jul; 100(7):1907-18. PubMed ID: 22492575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide.
    Chernozem RV; Pariy I; Surmeneva MA; Shvartsman VV; Planckaert G; Verduijn J; Ghysels S; Abalymov A; Parakhonskiy BV; Gracey E; Gonçalves A; Mathur S; Ronsse F; Depla D; Lupascu DC; Elewaut D; Surmenev RA; Skirtach AG
    Adv Healthc Mater; 2023 Mar; 12(8):e2201726. PubMed ID: 36468909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and characterization of polyhydroxybutyrate/lignin electro-spun scaffolds for tissue engineering applications.
    Mohammadalipour M; Behzad T; Karbasi S; Mohammadalipour Z
    Int J Biol Macromol; 2022 Oct; 218():317-334. PubMed ID: 35882262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun Magnetic Composite Poly-3-hydroxybutyrate/Magnetite Scaffolds for Biomedical Applications: Composition, Structure, Magnetic Properties, and Biological Performance.
    Pryadko A AS; Mukhortova YR; Chernozem RV; Pariy I; Alipkina SI; Zharkova II; Dudun AA; Zhuikov VA; Moisenovich AM; Bonartseva GA; Voinova VV; Chesnokova DV; Ivanov AA; Travnikova DY; Shaitan KV; Bonartsev AP; Wagner DV; Shlapakova LE; Surmenev RA; Surmeneva MA
    ACS Appl Bio Mater; 2022 Aug; 5(8):3999-4019. PubMed ID: 35925883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering.
    Goonoo N; Bhaw-Luximon A; Passanha P; Esteves SR; Jhurry D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1667-1684. PubMed ID: 27080439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.
    Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R
    J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.