These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33152517)

  • 1. PhieCBEs: Plant High-Efficiency Cytidine Base Editors with Expanded Target Range.
    Zeng D; Liu T; Tan J; Zhang Y; Zheng Z; Wang B; Zhou D; Xie X; Guo M; Liu YG; Zhu Q
    Mol Plant; 2020 Dec; 13(12):1666-1669. PubMed ID: 33152517
    [No Abstract]   [Full Text] [Related]  

  • 2. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of high-precision base editors for site-specific single nucleotide replacement.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient RNA-guided base editing in rabbit.
    Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z
    Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperativity between Cas9 and hyperactive AID establishes broad and diversifying mutational footprints in base editors.
    Berríos KN; Barka A; Gill J; Serrano JC; Bailer PF; Parker JB; Evitt NH; Gajula KS; Shi J; Kohli RM
    Nucleic Acids Res; 2024 Feb; 52(4):2078-2090. PubMed ID: 38261989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system.
    Qin W; Lu X; Lin S
    Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells.
    Fauser F; Kadam BN; Arangundy-Franklin S; Davis JE; Vaidya V; Schmidt NJ; Lew G; Xia DF; Mureli R; Ng C; Zhou Y; Scarlott NA; Eshleman J; Bendaña YR; Shivak DA; Reik A; Li P; Davis GD; Miller JC
    Nat Commun; 2024 Feb; 15(1):1181. PubMed ID: 38360922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells.
    Liu X; Zhang Y; Cheng C; Cheng AW; Zhang X; Li N; Xia C; Wei X; Liu X; Wang H
    Cell Res; 2017 Jan; 27(1):154-157. PubMed ID: 27910851
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
    Yu W; Li J; Huang S; Li X; Li P; Li G; Liang A; Chi T; Huang X
    BMC Biol; 2021 Feb; 19(1):34. PubMed ID: 33602235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-target effects of cytidine base editor and adenine base editor: What can we do?
    Liang P; Wen J; Huang J
    J Genet Genomics; 2019 Nov; 46(11):509-512. PubMed ID: 31902585
    [No Abstract]   [Full Text] [Related]  

  • 17. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins.
    Chen L; Park JE; Paa P; Rajakumar PD; Prekop HT; Chew YT; Manivannan SN; Chew WL
    Nat Commun; 2021 Mar; 12(1):1384. PubMed ID: 33654077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein.
    Zheng K; Jiang FF; Su L; Wang X; Chen YX; Chen HC; Liu ZF
    Virol Sin; 2020 Apr; 35(2):191-199. PubMed ID: 31792738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.
    Koblan LW; Doman JL; Wilson C; Levy JM; Tay T; Newby GA; Maianti JP; Raguram A; Liu DR
    Nat Biotechnol; 2018 Oct; 36(9):843-846. PubMed ID: 29813047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.