BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33152588)

  • 1. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide.
    Hua Z; Li D; Wu Z; Wang D; Cui Y; Huang X; Fang J; An T
    Water Res; 2021 Jan; 188():116549. PubMed ID: 33152588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide.
    Liu Y; Liu K; Plewa MJ; Karanfil T; Liu C
    J Environ Sci (China); 2022 Jul; 117():151-160. PubMed ID: 35725067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of chlorination and pre-ozonation on disinfection by-products formation from aqueous suspensions of cyanobacteria: Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis.
    Bernat-Quesada F; Álvaro M; García H; Navalón S
    Water Res; 2020 Sep; 183():116070. PubMed ID: 32622236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using UV/H
    Ding S; Wang F; Chu W; Fang C; Pan Y; Lu S; Gao N
    Water Res; 2019 Dec; 167():115096. PubMed ID: 31577966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.
    Ou TY; Wang GS
    Chemosphere; 2016 May; 150():109-115. PubMed ID: 26894677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa.
    Fang J; Ma J; Yang X; Shang C
    Water Res; 2010 Mar; 44(6):1934-40. PubMed ID: 20060561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of MPUV/chlorine oxidation and coexisting bromide, ammonia, and nitrate on DBP formation potential of five typical amino acids.
    Zhu Y; Li W; Shu S; Wang Q; Gao N
    Sci Total Environ; 2022 May; 821():153221. PubMed ID: 35063517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids.
    Li G; Tian C; Karanfil T; Liu C
    Chemosphere; 2024 Feb; 349():140985. PubMed ID: 38104740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO
    Zhong Y; Gan W; Du Y; Huang H; Wu Q; Xiang Y; Shang C; Yang X
    Water Res; 2019 Oct; 162():471-481. PubMed ID: 31302364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ammonia on acute toxicity and disinfection byproducts formation during chlorination of secondary wastewater effluents.
    Wang Z; Liao Y; Li X; Shuang C; Pan Y; Li Y; Li A
    Sci Total Environ; 2022 Jun; 826():153916. PubMed ID: 35183634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2018 Oct; 142():313-324. PubMed ID: 29890479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins.
    Liu C; Ersan MS; Wagner E; Plewa MJ; Amy G; Karanfil T
    Water Res; 2020 Oct; 184():116145. PubMed ID: 32771689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination.
    Zhai H; Cheng S; Zhang L; Luo W; Zhou Y
    Chemosphere; 2022 Dec; 308(Pt 1):136171. PubMed ID: 36037959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutions of dissolved organic matter and disinfection by-products formation in source water during UV-LED (275 nm)/chlorine process.
    Zhao X; Chen C; Chen H; Guo Y; Zhang X; Li M; Cao L; Wang Y; Gong T; Che L; Yang G; Xian Q
    Water Res; 2023 Sep; 243():120284. PubMed ID: 37441900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.