These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33152636)

  • 1. The effect of planar constraint on the definition of the wrist axes of rotation.
    Akinnola OO; Vardakastani V; Kedgley AE
    J Biomech; 2020 Dec; 113():110083. PubMed ID: 33152636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the Rotation Axes of the Scapholunate Joint During Flexion-Extension and Radial-Ulnar Deviation Motions.
    Best GM; Mack ZE; Pichora DR; Crisco JJ; Kamal RN; Rainbow MJ
    J Hand Surg Am; 2019 Sep; 44(9):772-778. PubMed ID: 31300230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Intercalated Segment: Does the Triquetrum Move in Synchrony With the Lunate?
    Mack ZE; Kamal RN; Best GM; Wolfe SW; Pichora DR; Rainbow MJ
    J Hand Surg Am; 2022 Aug; 47(8):762-771. PubMed ID: 34627631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The passive stiffness of the wrist and forearm.
    Formica D; Charles SK; Zollo L; Guglielmelli E; Hogan N; Krebs HI
    J Neurophysiol; 2012 Aug; 108(4):1158-66. PubMed ID: 22649208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The triquetrum-hamate joint: an anatomic and in vivo three-dimensional kinematic study.
    Moritomo H; Goto A; Sato Y; Sugamoto K; Murase T; Yoshikawa H
    J Hand Surg Am; 2003 Sep; 28(5):797-805. PubMed ID: 14507511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capitate-based kinematics of the midcarpal joint during wrist radioulnar deviation: an in vivo three-dimensional motion analysis.
    Moritomo H; Murase T; Goto A; Oka K; Sugamoto K; Yoshikawa H
    J Hand Surg Am; 2004 Jul; 29(4):668-75. PubMed ID: 15249092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in-vivo study of normal wrist kinematics.
    Brumbaugh RB; Crowninshield RD; Blair WF; Andrews JG
    J Biomech Eng; 1982 Aug; 104(3):176-81. PubMed ID: 7120940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A geometric framework for the estimation of joint stiffness of the human wrist.
    Formica D; Azhar M; Tommasino P; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():151-156. PubMed ID: 31374622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carpal bone kinematics in combined wrist joint motions may differ from the bone kinematics during simple wrist motions.
    Upal MA
    Biomed Sci Instrum; 2003; 39():272-7. PubMed ID: 12724906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A musculoskeletal model to estimate the relative changes in wrist strength due to interacting wrist and forearm postures.
    La Delfa NJ; Potvin JR
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1403-1411. PubMed ID: 28836461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion analysis of the wrist joints in patients with rheumatoid arthritis.
    Yayama T; Kobayashi S; Kokubo Y; Inukai T; Mizukami Y; Kubota M; Ishikawa J; Baba H; Minami A
    Mod Rheumatol; 2007; 17(4):322-6. PubMed ID: 17694267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical axes of the wrist are oriented obliquely to the anatomical axes.
    Crisco JJ; Heard WM; Rich RR; Paller DJ; Wolfe SW
    J Bone Joint Surg Am; 2011 Jan; 93(2):169-77. PubMed ID: 21248214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.
    Fraysse F; Thewlis D
    J Biomech; 2014 Nov; 47(14):3488-93. PubMed ID: 25267575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical function requirements of the wrist. Circumduction versus flexion/abduction range of motion.
    Gracia-Ibáñez V; Sancho-Bru JL; Vergara M; Roda-Sales A; Jarque-Bou NJ; Bayarri-Porcar V
    J Biomech; 2020 Sep; 110():109975. PubMed ID: 32827773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vivo kinematics of the rheumatoid wrist.
    Evans JS; Blair WF; Andrews JG; Crowninshield RD
    J Orthop Res; 1986; 4(2):142-51. PubMed ID: 3712123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation.
    Neu CP; Crisco JJ; Wolfe SW
    J Biomech; 2001 Nov; 34(11):1429-38. PubMed ID: 11672717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does Wrist Laxity Influence Three-Dimensional Carpal Bone Motion?
    Best GM; Zec ML; Pichora DR; Kamal RN; Rainbow MJ
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.