These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33152682)
1. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. Jung JH; Sim YB; Baik JH; Park JH; Kim SH Bioresour Technol; 2021 Jan; 320(Pt A):124279. PubMed ID: 33152682 [TBL] [Abstract][Full Text] [Related]
2. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related]
3. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Han W; Liu DN; Shi YW; Tang JH; Li YF; Ren NQ Bioresour Technol; 2015 Mar; 180():54-8. PubMed ID: 25590421 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. Jung JH; Sim YB; Ko J; Park SY; Kim GB; Kim SH Bioresour Technol; 2022 May; 352():127094. PubMed ID: 35367325 [TBL] [Abstract][Full Text] [Related]
5. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Laothanachareon T; Kanchanasuta S; Mhuanthong W; Phalakornkule C; Pisutpaisal N; Champreda V J Environ Manage; 2014 Nov; 144():143-51. PubMed ID: 24945701 [TBL] [Abstract][Full Text] [Related]
6. Effect of genus Clostridium abundance on mixed-culture fermentation converting food waste into biohydrogen. Jung JH; Sim YB; Baik JH; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2021 Dec; 342():125942. PubMed ID: 34563827 [TBL] [Abstract][Full Text] [Related]
7. Improvement of biohydrogen production using a reduced pressure fermentation. Kisielewska M; Dębowski M; Zieliński M Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633 [TBL] [Abstract][Full Text] [Related]
8. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. Sim YB; Jung JH; Baik JH; Park JH; Kumar G; Rajesh Banu J; Kim SH Bioresour Technol; 2021 Nov; 340():125562. PubMed ID: 34325392 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Palomo-Briones R; Trably E; López-Lozano NE; Celis LB; Méndez-Acosta HO; Bernet N; Razo-Flores E Appl Microbiol Biotechnol; 2018 Mar; 102(5):2465-2475. PubMed ID: 29335876 [TBL] [Abstract][Full Text] [Related]
10. Salinity impact on the metabolic and taxonomic profiles of acid and alkali treated inoculum for hydrogen production from food waste. Luo L; Pradhan N Bioresour Technol; 2022 Oct; 362():127815. PubMed ID: 36031126 [TBL] [Abstract][Full Text] [Related]
11. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
12. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR). Ferraz AD; Zaiat M; Gupta M; Elbeshbishy E; Hafez H; Nakhla G Bioresour Technol; 2014 Jul; 164():371-9. PubMed ID: 24865326 [TBL] [Abstract][Full Text] [Related]
13. Changes in performance and bacterial communities in response to various process disturbances in a high-rate biohydrogen reactor fed with galactose. Park JH; Kumar G; Park JH; Park HD; Kim SH Bioresour Technol; 2015; 188():109-16. PubMed ID: 25683506 [TBL] [Abstract][Full Text] [Related]
14. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of hydrogen production and bacterial communities in mesophilic and thermophilic consortia using multiple inoculum sources. Kim G; Yang H; Lee J; Cho KS Chemosphere; 2024 Feb; 350():141144. PubMed ID: 38190944 [TBL] [Abstract][Full Text] [Related]
16. Nickel-iron doped on granular activated carbon for efficient immobilization in biohydrogen production. Jamaludin NFM; Abdullah LC; Idrus S; Engliman NS; Tan JP; Jamali NS Bioresour Technol; 2024 Jan; 391(Pt A):129933. PubMed ID: 37898370 [TBL] [Abstract][Full Text] [Related]
17. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Luo L; Sriram S; Johnravindar D; Louis Philippe Martin T; Wong JWC; Pradhan N Bioresour Technol; 2022 Aug; 358():127404. PubMed ID: 35654323 [TBL] [Abstract][Full Text] [Related]
18. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Tang J; Wang X; Hu Y; Zhang Y; Li Y Waste Manag; 2016 Jun; 52():278-85. PubMed ID: 27040090 [TBL] [Abstract][Full Text] [Related]
19. Biohydrogen production from glucose using submerged dynamic filtration module: Metabolic product distribution and flux-based analysis. Anburajan P; Park JH; Pugazhendhi A; Kim JS; Kim SH Bioresour Technol; 2019 Sep; 287():121445. PubMed ID: 31113707 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen production at pH below 3.0: Is it possible? Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]