BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33152718)

  • 1. Influence of nonlocal dielectric response on the Au tip-enhanced fluorescence effect.
    Pei H; Wei Y; Dai Q
    J Phys Condens Matter; 2021 Feb; 33(7):075003. PubMed ID: 33152718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna.
    Pei H; Peng W; Zhang J; Zhao J; Qi J; Yu C; Li J; Wei Y
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38176065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of nonlocal dielectric response on the surface-enhanced Raman and fluorescence spectra of molecular systems.
    Wei Y; Pei H; Li L; Zhu Y
    J Phys Condens Matter; 2018 Jun; 30(24):245302. PubMed ID: 29726841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep ultraviolet tip-enhanced fluorescence.
    Meng L; Gao M; Sun M
    Nanotechnology; 2019 Jan; 30(3):035202. PubMed ID: 30418945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas.
    Córdova-Castro RM; van Dam B; Lauri A; Maier SA; Sapienza R; De Wilde Y; Izeddin I; Krachmalnicoff V
    Light Sci Appl; 2024 Jan; 13(1):7. PubMed ID: 38167240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of metal-nanostructure features on tip-enhanced photoluminescence of single molecules.
    Romanelli M; Dall'Osto G; Corni S
    J Chem Phys; 2021 Dec; 155(21):214304. PubMed ID: 34879682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter.
    Jiao L; Liu M; Garai M; Gao N; Yang J; Xu QH; Hong M
    Appl Opt; 2016 Nov; 55(31):8722-8726. PubMed ID: 27828266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells.
    Fu Y; Zhang J; Lakowicz JR
    Chem Commun (Camb); 2012 Oct; 48(78):9726-8. PubMed ID: 22914646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence enhancement in visible light: dielectric or noble metal?
    Sun S; Wu L; Bai P; Png CE
    Phys Chem Chem Phys; 2016 Jul; 18(28):19324-35. PubMed ID: 27374052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons.
    Issa NA; Guckenberger R
    Opt Express; 2007 Sep; 15(19):12131-44. PubMed ID: 19547579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection.
    Peng M; Sun F; Na N; Ouyang J
    Small; 2020 May; 16(19):e2000460. PubMed ID: 32309897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering.
    Demming AL; Festy F; Richards D
    J Chem Phys; 2005 May; 122(18):184716. PubMed ID: 15918756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Loss Plasmonic Dielectric Nanoresonators.
    Yang Y; Miller OD; Christensen T; Joannopoulos JD; Soljačić M
    Nano Lett; 2017 May; 17(5):3238-3245. PubMed ID: 28441499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas.
    Giannini V; Sánchez-Gil JA
    Opt Lett; 2008 May; 33(9):899-901. PubMed ID: 18451932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.