These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33153263)
1. Cobalt Corroles as Electrocatalysts for Water Oxidation: Strong Effect of Substituents on Catalytic Activity. Neuman NI; Albold U; Ferretti E; Chandra S; Steinhauer S; Rößner P; Meyer F; Doctorovich F; Vaillard SE; Sarkar B Inorg Chem; 2020 Nov; 59(22):16622-16634. PubMed ID: 33153263 [TBL] [Abstract][Full Text] [Related]
2. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035 [TBL] [Abstract][Full Text] [Related]
4. Hypercorroles Formed via the Tail that Wagged the Dog: Charge Transfer Interactions from Innocent Corroles to Osterloh WR; Desbois N; Gros CP; Kadish KM Inorg Chem; 2022 Dec; 61(50):20576-20586. PubMed ID: 36469703 [TBL] [Abstract][Full Text] [Related]
5. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights. Thomas KE; Alemayehu AB; Conradie J; Beavers CM; Ghosh A Acc Chem Res; 2012 Aug; 45(8):1203-14. PubMed ID: 22444488 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Lei H; Han A; Li F; Zhang M; Han Y; Du P; Lai W; Cao R Phys Chem Chem Phys; 2014 Feb; 16(5):1883-93. PubMed ID: 24327074 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts. Simkhovich L; Mahammed A; Goldberg I; Gross Z Chemistry; 2001 Mar; 7(5):1041-55. PubMed ID: 11303864 [TBL] [Abstract][Full Text] [Related]
8. Chromium corroles in four oxidation States. Meier-Callahan AE; Di Bilio AJ; Simkhovich L; Mahammed A; Goldberg I; Gray HB; Gross Z Inorg Chem; 2001 Dec; 40(26):6788-93. PubMed ID: 11735492 [TBL] [Abstract][Full Text] [Related]
9. Cobalt- and Rhodium-Corrole-Triphenylphosphine Complexes Revisited: The Question of a Noninnocent Corrole. Ganguly S; Renz D; Giles LJ; Gagnon KJ; McCormick LJ; Conradie J; Sarangi R; Ghosh A Inorg Chem; 2017 Dec; 56(24):14788-14800. PubMed ID: 29210572 [TBL] [Abstract][Full Text] [Related]
10. The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions. Xu L; Lei H; Zhang Z; Yao Z; Li J; Yu Z; Cao R Phys Chem Chem Phys; 2017 Apr; 19(15):9755-9761. PubMed ID: 28184402 [TBL] [Abstract][Full Text] [Related]
11. The electronic structure of iron corroles: a combined experimental and quantum chemical study. Ye S; Tuttle T; Bill E; Simkhovich L; Gross Z; Thiel W; Neese F Chemistry; 2008; 14(34):10839-51. PubMed ID: 18956397 [TBL] [Abstract][Full Text] [Related]
12. Substituent Effect on Ligand-Centered Electrocatalytic Hydrogen Evolution of Phosphorus Corroles. Yang G; Ullah Z; Yang W; Wook Kwon H; Liang ZX; Zhan X; Yuan GQ; Liu HY ChemSusChem; 2023 May; 16(10):e202300211. PubMed ID: 36815428 [TBL] [Abstract][Full Text] [Related]
13. Silver corrole complexes: unusual oxidation states and near-IR-absorbing dyes. Sinha W; Sommer MG; Deibel N; Ehret F; Sarkar B; Kar S Chemistry; 2014 Nov; 20(48):15920-32. PubMed ID: 25280161 [TBL] [Abstract][Full Text] [Related]
14. Structural, electrochemical and spectroelectrochemical study on the geometric and electronic structures of [(corrolato)Au(III)](n) (n = 0, +1, -1) complexes. Sinha W; Sommer MG; van der Meer M; Plebst S; Sarkar B; Kar S Dalton Trans; 2016 Feb; 45(7):2914-23. PubMed ID: 26750146 [TBL] [Abstract][Full Text] [Related]
15. High-valent imido complexes of manganese and chromium corroles. Edwards NY; Eikey RA; Loring MI; Abu-Omar MM Inorg Chem; 2005 May; 44(10):3700-8. PubMed ID: 15877454 [TBL] [Abstract][Full Text] [Related]
16. Relativistic Effects on a Metal-Metal Bond: Osmium Corrole Dimers. Alemayehu AB; McCormick LJ; Vazquez-Lima H; Ghosh A Inorg Chem; 2019 Feb; 58(4):2798-2806. PubMed ID: 30730723 [TBL] [Abstract][Full Text] [Related]
17. Electronic Coupling and Electrocatalysis in Redox Active Fused Iron Corroles. Mizrahi A; Bhowmik S; Manna AK; Sinha W; Kumar A; Saphier M; Mahammed A; Patra M; Fridman N; Zilbermann I; Kronik L; Gross Z Inorg Chem; 2022 Dec; 61(51):20725-20733. PubMed ID: 36512733 [TBL] [Abstract][Full Text] [Related]
18. Electronic absorption, resonance Raman, and electrochemical studies of planar and saddled copper(III) meso-triarylcorroles. Highly substituent-sensitive Soret bands as a distinctive feature of high-valent transition metal corroles. Wasbotten IH; Wondimagegn T; Ghosh A J Am Chem Soc; 2002 Jul; 124(27):8104-16. PubMed ID: 12095356 [TBL] [Abstract][Full Text] [Related]