These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33154140)

  • 21. Suppressing Cation Migration and Reducing Particle Cracks in a Layered Fe-Based Cathode for Advanced Sodium-Ion Batteries.
    Xu J; Han Z; Jiang K; Bai P; Liang Y; Zhang X; Wang P; Guo S; Zhou H
    Small; 2020 Jan; 16(3):e1904388. PubMed ID: 31830374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.
    Yabuuchi N; Komaba S
    Sci Technol Adv Mater; 2014 Aug; 15(4):043501. PubMed ID: 27877694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application.
    Cui H; Guo Y; Ma W; Zhou Z
    ChemSusChem; 2020 Mar; 13(6):1155-1171. PubMed ID: 31872570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State-of-the-Art Electrode Materials for Sodium-Ion Batteries.
    Mauger A; Julien CM
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Core-Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries.
    Chen C; Han Z; Chen S; Qi S; Lan X; Zhang C; Chen L; Wang P; Wei W
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7144-7152. PubMed ID: 31961640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage.
    Pomerantseva E
    Acc Chem Res; 2023 Jan; 56(1):13-24. PubMed ID: 36512762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metal-Ion Batteries: Progress and Opportunities.
    Li W; Kheimeh Sari HM; Li X
    ChemSusChem; 2020 Mar; 13(6):1172-1202. PubMed ID: 31777162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries.
    Wang PF; You Y; Yin YX; Wang YS; Wan LJ; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7445-9. PubMed ID: 27140875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.
    Tian C; Lin F; Doeff MM
    Acc Chem Res; 2018 Jan; 51(1):89-96. PubMed ID: 29257667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode.
    Xiao Y; Zhu YF; Xiang W; Wu ZG; Li YC; Lai J; Li S; Wang E; Yang ZG; Xu CL; Zhong BH; Guo XD
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1491-1495. PubMed ID: 31677318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of chemically preintercalated alkali ion on structure of layered titanates and their electrochemistry in aqueous energy storage systems.
    Mukherjee S; Quilty CD; Yao S; Stackhouse CA; Wang L; Takeuchi KJ; Takeuchi ES; Wang F; Marschilok AC; Pomerantseva E
    J Mater Chem A Mater; 2020 Sep; 8(35):18220-18231. PubMed ID: 34413977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Layered Oxide Cathode for Potassium-Ion Battery: Recent Progress and Prospective.
    Zhang X; Wei Z; Dinh KN; Chen N; Chen G; Du F; Yan Q
    Small; 2020 Sep; 16(38):e2002700. PubMed ID: 32762009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin Layered SnSe Nanoplates for Low Voltage, High-Rate, and Long-Life Alkali-Ion Batteries.
    Wang W; Li P; Zheng H; Liu Q; Lv F; Wu J; Wang H; Guo S
    Small; 2017 Dec; 13(46):. PubMed ID: 29057606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.
    Ivanova S; Zhecheva E; Kukeva R; Nihtianova D; Mihaylov L; Atanasova G; Stoyanova R
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17321-33. PubMed ID: 27315402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Focus on Spinel Li
    Natarajan S; Subramanyan K; Aravindan V
    Small; 2019 Dec; 15(49):e1904484. PubMed ID: 31660684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors.
    Lou S; Zhao Y; Wang J; Yin G; Du C; Sun X
    Small; 2019 Dec; 15(52):e1904740. PubMed ID: 31778036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries.
    Xiang X; Zhang K; Chen J
    Adv Mater; 2015 Sep; 27(36):5343-64. PubMed ID: 26275211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.
    Li F; Zhou Z
    Small; 2018 Feb; 14(6):. PubMed ID: 29266802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.