BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33154186)

  • 1. The reptilian perspective on vertebrate immunity: 10 years of progress.
    Zimmerman LM
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33154186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the vertebrate immune system: insights from the reptilian perspective.
    Zimmerman LM; Vogel LA; Bowden RM
    J Exp Biol; 2010 Mar; 213(5):661-71. PubMed ID: 20154181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment.
    Ortiz-Santaliestra ME; Maia JP; Egea-Serrano A; Lopes I
    Ecotoxicology; 2018 Sep; 27(7):819-833. PubMed ID: 29492806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ranaviruses and reptiles.
    Wirth W; Schwarzkopf L; Skerratt LF; Ariel E
    PeerJ; 2018; 6():e6083. PubMed ID: 30581674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Immunity in Reptiles: Conventional Components but Unconventional Strategies.
    Zimmerman LM
    Integr Comp Biol; 2022 Dec; 62(6):1572-1583. PubMed ID: 35482599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning of natriuretic peptides from the heart of reptiles: loss of ANP in diapsid reptiles and birds.
    Trajanovska S; Donald JA
    Gen Comp Endocrinol; 2008 Apr; 156(2):339-46. PubMed ID: 18295764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome size and metabolic intensity in tetrapods: a tale of two lines.
    Vinogradov AE; Anatskaya OV
    Proc Biol Sci; 2006 Jan; 273(1582):27-32. PubMed ID: 16519230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Vertebrate Corneal Structure: The Evolution of a Refractive Lens.
    Winkler M; Shoa G; Tran ST; Xie Y; Thomasy S; Raghunathan VK; Murphy C; Brown DJ; Jester JV
    Invest Ophthalmol Vis Sci; 2015 Apr; 56(4):2764-72. PubMed ID: 26066606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The untapped potential of reptile biodiversity for understanding how and why animals age.
    Hoekstra LA; Schwartz TS; Sparkman AM; Miller DAW; Bronikowski AM
    Funct Ecol; 2020 Jan; 34(1):38-54. PubMed ID: 32921868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory Mechanisms of Parent-Offspring Recognition in Fishes, Amphibians, and Reptiles.
    Ray EJ; Maruska KP
    Integr Comp Biol; 2023 Dec; 63(6):1168-1181. PubMed ID: 37488679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.
    Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():179-192. PubMed ID: 27649598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context.
    Roth TC; Krochmal AR; LaDage LD
    Bioessays; 2019 Aug; 41(8):e1900033. PubMed ID: 31210380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and Where Are We Going?
    Field EK; Hartzheim A; Terry J; Dawson G; Haydt N; Neuman-Lee LA
    Integr Comp Biol; 2022 Dec; 62(6):1557-1571. PubMed ID: 35833292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny and ontogeny of vertebrate brain gangliosides.
    Irwin LN
    Adv Exp Med Biol; 1984; 174():319-29. PubMed ID: 6741737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration.
    Chang C; Wu P; Baker RE; Maini PK; Alibardi L; Chuong CM
    Int J Dev Biol; 2009; 53(5-6):813-26. PubMed ID: 19557687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Who rises to the challenge? Testing the Challenge Hypothesis in fish, amphibians, reptiles, and mammals.
    Moore IT; Hernandez J; Goymann W
    Horm Behav; 2020 Jul; 123():104537. PubMed ID: 31181193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EVOLUTIONARY AND MORPHOLOGICAL CHANGES IN VERTEBRATE JUNCTIONS.
    MAVRINSKAYA LF
    Fed Proc Transl Suppl; 1963; 22():994-1008. PubMed ID: 14060303
    [No Abstract]   [Full Text] [Related]  

  • 18. slc26a12-A novel member of the slc26 family, is located in tandem with slc26a2 in coelacanths, amphibians, reptiles, and birds.
    Nagashima A; Torii K; Ota C; Kato A
    Physiol Rep; 2024 Jun; 12(11):e16089. PubMed ID: 38828713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].
    Arch-Tirado E; Collado-Corona MA; Morales-Martínez Jde J
    Cir Cir; 2004; 72(4):309-15. PubMed ID: 15469751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamine oxidase in the brain of vertebrates.
    BURKARD WP; GEY KF; PLETSCHER A
    J Neurochem; 1963 Mar; 10():183-6. PubMed ID: 14017033
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.