BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33154353)

  • 1. Structural insights into the mechanism of rhodopsin phosphodiesterase.
    Ikuta T; Shihoya W; Sugiura M; Yoshida K; Watari M; Tokano T; Yamashita K; Katayama K; Tsunoda SP; Uchihashi T; Kandori H; Nureki O
    Nat Commun; 2020 Nov; 11(1):5605. PubMed ID: 33154353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel rhodopsin phosphodiesterase from
    Tian Y; Gao S; Yang S; Nagel G
    Biochem J; 2018 Mar; 475(6):1121-1128. PubMed ID: 29483295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity.
    Yoshida K; Tsunoda SP; Brown LS; Kandori H
    J Biol Chem; 2017 May; 292(18):7531-7541. PubMed ID: 28302718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote.
    Watari M; Ikuta T; Yamada D; Shihoya W; Yoshida K; Tsunoda SP; Nureki O; Kandori H
    J Biol Chem; 2019 Mar; 294(10):3432-3443. PubMed ID: 30622140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta.
    Lamarche LB; Kumar RP; Trieu MM; Devine EL; Cohen-Abeles LE; Theobald DL; Oprian DD
    Biochemistry; 2017 Oct; 56(43):5812-5822. PubMed ID: 28976747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates.
    Tian Y; Yang S; Nagel G; Gao S
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Properties of New Enzyme Rhodopsins with Phosphodiesterase Activity.
    Sugiura M; Tsunoda SP; Hibi M; Kandori H
    ACS Omega; 2020 May; 5(18):10602-10609. PubMed ID: 32426619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
    Besaw JE; Ou WL; Morizumi T; Eger BT; Sanchez Vasquez JD; Chu JHY; Harris A; Brown LS; Miller RJD; Ernst OP
    J Biol Chem; 2020 Oct; 295(44):14793-14804. PubMed ID: 32703899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
    Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M
    J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of rhodopsin phosphorylation on the light-dependent activation of phosphodiesterase from bovine rod outer segments.
    Arshavsky VY; Dizhoor AM; Shestakova IK; Philippov P
    FEBS Lett; 1985 Feb; 181(2):264-6. PubMed ID: 2982661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design.
    Jansen C; Kooistra AJ; Kanev GK; Leurs R; de Esch IJ; de Graaf C
    J Med Chem; 2016 Aug; 59(15):7029-65. PubMed ID: 26908025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei.
    Rascón A; Soderling SH; Schaefer JB; Beavo JA
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4714-9. PubMed ID: 11930017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha.
    Hayashida Y; Yamamoto C; Takahashi F; Shibata A; Kasahara M
    J Plant Res; 2022 Jan; 135(1):137-144. PubMed ID: 34779957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of mouse rod response decay by rhodopsin kinase and recoverin.
    Chen CK; Woodruff ML; Chen FS; Chen Y; Cilluffo MC; Tranchina D; Fain GL
    J Neurosci; 2012 Nov; 32(45):15998-6006. PubMed ID: 23136436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10.
    Wang H; Robinson H; Ke H
    J Mol Biol; 2007 Aug; 371(2):302-7. PubMed ID: 17582435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guinea-pig lung adenylyl and guanylyl cyclase and PDE activities associated with airway hyper- and hypo-reactivity following LPS inhalation.
    Toward TJ; Nials AT; Johnson FJ
    Life Sci; 2005 Jan; 76(9):997-1011. PubMed ID: 15607329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization.
    Weeks JL; Zoraghi R; Francis SH; Corbin JD
    Biochemistry; 2007 Sep; 46(36):10353-64. PubMed ID: 17696499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.