These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33154381)

  • 21. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the feasibility of two post-hoc correction techniques for mitigating posture-induced measurement errors associated with wearable motion capture.
    Leineweber MJ; Gomez Orozco MD; Andrysek J
    Med Eng Phys; 2019 Sep; 71():38-44. PubMed ID: 31285135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Lower Limb Motion Capture and Recognition Based on Smartphones.
    Duan LT; Lawo M; Wang ZG; Wang HY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy and repeatability of smartphone sensors for measuring shank-to-vertical angle.
    Nguyen BT; Baicoianu NA; Howell DB; Peters KM; Steele KM
    Prosthet Orthot Int; 2020 Jun; 44(3):172-179. PubMed ID: 32312145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of Knee Power Deficits Following Anterior Cruciate Ligament Reconstruction Using Wearable Sensors.
    Pratt KA; Sigward SM
    J Orthop Sports Phys Ther; 2018 Nov; 48(11):895-902. PubMed ID: 29996735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders.
    Hsu WC; Sugiarto T; Lin YJ; Yang FC; Lin ZY; Sun CT; Hsu CL; Chou KN
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretchable Electronic Wearable Motion Sensors Delineate Signatures of Human Motion Tasks.
    Garlant JA; Ammann KR; Slepian MJ
    ASAIO J; 2018; 64(3):351-359. PubMed ID: 29608494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility and Validity of Discriminating Yaw Plane Head-on-Trunk Motion Using Inertial Wearable Sensors.
    Paul SS; Walther RG; Beseris EA; Dibble LE; Lester ME
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2347-2354. PubMed ID: 28829312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards Wearable Comprehensive Capture and Analysis of Skeletal Muscle Activity during Human Locomotion.
    Ma CZ; Ling YT; Shea QTK; Wang LK; Wang XY; Zheng YP
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing leg movement enhances wearable monitoring of energy expenditure.
    Slade P; Kochenderfer MJ; Delp SL; Collins SH
    Nat Commun; 2021 Jul; 12(1):4312. PubMed ID: 34257310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison.
    Milosevic B; Leardini A; Farella E
    Biomed Eng Online; 2020 Apr; 19(1):25. PubMed ID: 32326957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients.
    Kayaalp ME; Agres AN; Reichmann J; Bashkuev M; Duda GN; Becker R
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerations from wearable accelerometers reflect knee loading during running after anterior cruciate ligament reconstruction.
    Havens KL; Cohen SC; Pratt KA; Sigward SM
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():57-61. PubMed ID: 30029071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Step Size and Lower Limb Segment Orientation from Multiple Low-Cost Wearable Inertial/Magnetic Sensors for Pedestrian Navigation.
    Tjhai C; O'Keefe K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.
    Huang B; Li M; Mei T; McCoul D; Qin S; Zhao Z; Zhao J
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring.
    Yamamoto Y; Harada S; Yamamoto D; Honda W; Arie T; Akita S; Takei K
    Sci Adv; 2016 Nov; 2(11):e1601473. PubMed ID: 28138532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.