These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33154496)
81. Evaluation of digital staining for ex vivo confocal laser scanning microscopy. Schüürmann M; Stecher MM; Paasch U; Simon JC; Grunewald S J Eur Acad Dermatol Venereol; 2020 Jul; 34(7):1496-1499. PubMed ID: 31732988 [TBL] [Abstract][Full Text] [Related]
82. Switchable Acoustic and Optical Resolution Photoacoustic Microscopy for In Vivo Small-animal Blood Vasculature Imaging. Moothanchery M; Sharma A; Pramanik M J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671655 [TBL] [Abstract][Full Text] [Related]
83. Contact-free endoscopic photoacoustic sensing using speckle analysis. Lengenfelder B; Mehari F; Hohmann M; Löhr C; Waldner MJ; Schmidt M; Zalevsky Z; Klämpfl F J Biophotonics; 2019 Dec; 12(12):e201900130. PubMed ID: 31468729 [TBL] [Abstract][Full Text] [Related]
85. Virtual histology of an entire mouse brain from formalin fixation to paraffin embedding. Part 1: Data acquisition, anatomical feature segmentation, tracking global volume and density changes. Rodgers G; Kuo W; Schulz G; Scheel M; Migga A; Bikis C; Tanner C; Kurtcuoglu V; Weitkamp T; Müller B J Neurosci Methods; 2021 Dec; 364():109354. PubMed ID: 34529981 [TBL] [Abstract][Full Text] [Related]
86. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625 [TBL] [Abstract][Full Text] [Related]
88. Ex Vivo Confocal Fluorescence Microscopy for Rapid Evaluation of Tissues in Surgical Pathology Practice. Krishnamurthy S; Cortes A; Lopez M; Wallace M; Sabir S; Shaw K; Mills G Arch Pathol Lab Med; 2018 Mar; 142(3):396-401. PubMed ID: 29266968 [TBL] [Abstract][Full Text] [Related]
89. Characterization of interventional photoacoustic imaging (iPAI) capabilities in biological tissues. Bhagavatula SK; Li L; Tearney GJ Med Phys; 2021 Feb; 48(2):770-780. PubMed ID: 33264419 [TBL] [Abstract][Full Text] [Related]
90. Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging. Li L; Dai C; Li Q; Zhao Q; Jiang X; Chai X; Zhou C Opt Lett; 2015 Oct; 40(19):4448-51. PubMed ID: 26421553 [TBL] [Abstract][Full Text] [Related]
91. Effects of tissue processing techniques in acoustical (1.2 GHz) and light microscopy. van der Steen AF; Thijssen JM; Ebben GP; de Wilde PC Histochemistry; 1992; 97(2):195-9. PubMed ID: 1373128 [TBL] [Abstract][Full Text] [Related]
92. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. He Y; Shi J; Pleitez MA; Maslov K; Wagenaar DA; Wang LV J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33118344 [TBL] [Abstract][Full Text] [Related]