These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33154496)

  • 81. Evaluation of digital staining for ex vivo confocal laser scanning microscopy.
    Schüürmann M; Stecher MM; Paasch U; Simon JC; Grunewald S
    J Eur Acad Dermatol Venereol; 2020 Jul; 34(7):1496-1499. PubMed ID: 31732988
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Switchable Acoustic and Optical Resolution Photoacoustic Microscopy for In Vivo Small-animal Blood Vasculature Imaging.
    Moothanchery M; Sharma A; Pramanik M
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671655
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Contact-free endoscopic photoacoustic sensing using speckle analysis.
    Lengenfelder B; Mehari F; Hohmann M; Löhr C; Waldner MJ; Schmidt M; Zalevsky Z; Klämpfl F
    J Biophotonics; 2019 Dec; 12(12):e201900130. PubMed ID: 31468729
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Microtomy: Cutting Formalin-Fixed, Paraffin-Embedded Sections.
    Sy J; Ang LC
    Methods Mol Biol; 2019; 1897():269-278. PubMed ID: 30539451
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Virtual histology of an entire mouse brain from formalin fixation to paraffin embedding. Part 1: Data acquisition, anatomical feature segmentation, tracking global volume and density changes.
    Rodgers G; Kuo W; Schulz G; Scheel M; Migga A; Bikis C; Tanner C; Kurtcuoglu V; Weitkamp T; Müller B
    J Neurosci Methods; 2021 Dec; 364():109354. PubMed ID: 34529981
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast.
    Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ
    Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Coherence-gated photoacoustic remote sensing microscopy.
    Bell KL; Hajireza P; Zemp RJ
    Opt Express; 2018 Sep; 26(18):23689-23704. PubMed ID: 30184866
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Ex Vivo Confocal Fluorescence Microscopy for Rapid Evaluation of Tissues in Surgical Pathology Practice.
    Krishnamurthy S; Cortes A; Lopez M; Wallace M; Sabir S; Shaw K; Mills G
    Arch Pathol Lab Med; 2018 Mar; 142(3):396-401. PubMed ID: 29266968
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterization of interventional photoacoustic imaging (iPAI) capabilities in biological tissues.
    Bhagavatula SK; Li L; Tearney GJ
    Med Phys; 2021 Feb; 48(2):770-780. PubMed ID: 33264419
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging.
    Li L; Dai C; Li Q; Zhao Q; Jiang X; Chai X; Zhou C
    Opt Lett; 2015 Oct; 40(19):4448-51. PubMed ID: 26421553
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effects of tissue processing techniques in acoustical (1.2 GHz) and light microscopy.
    van der Steen AF; Thijssen JM; Ebben GP; de Wilde PC
    Histochemistry; 1992; 97(2):195-9. PubMed ID: 1373128
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy.
    He Y; Shi J; Pleitez MA; Maslov K; Wagenaar DA; Wang LV
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33118344
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Functional photoacoustic remote sensing microscopy using a stabilized temperature-regulated stimulated Raman scattering light source.
    Hosseinaee Z; Ecclestone B; Pellegrino N; Khalili L; Mukhangaliyeva L; Fieguth P; Reza PH
    Opt Express; 2021 Sep; 29(19):29745-29754. PubMed ID: 34614713
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy.
    Karen JK; Gareau DS; Dusza SW; Tudisco M; Rajadhyaksha M; Nehal KS
    Br J Dermatol; 2009 Jun; 160(6):1242-50. PubMed ID: 19416248
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Flow chamber staining modality for real-time inspection of dynamic phenotypes in multiple histological stains.
    Li Z; Muench G; Goebel S; Uhland K; Wenhart C; Reimann A
    PLoS One; 2023; 18(5):e0284444. PubMed ID: 37141296
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy.
    Cao R; Nelson SD; Davis S; Liang Y; Luo Y; Zhang Y; Crawford B; Wang LV
    Nat Biomed Eng; 2023 Feb; 7(2):124-134. PubMed ID: 36123403
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Utility of whole slide imaging and virtual microscopy in prostate pathology.
    Camparo P; Egevad L; Algaba F; Berney DM; Boccon-Gibod L; Compérat E; Evans AJ; Grobholz R; Kristiansen G; Langner C; Lopez-Beltran A; Montironi R; Oliveira P; Vainer B; Varma M
    APMIS; 2012 Apr; 120(4):298-304. PubMed ID: 22429212
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dual contrastive learning based image-to-image translation of unstained skin tissue into virtually stained H&E images.
    Asaf MZ; Rao B; Akram MU; Khawaja SG; Khan S; Truong TM; Sekhon P; Khan IJ; Abbasi MS
    Sci Rep; 2024 Jan; 14(1):2335. PubMed ID: 38282056
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Metabolic light absorption, scattering, and emission (MetaLASE) microscopy.
    Restall BS; Haven NJM; Martell MT; Cikaluk BD; Wang J; Kedarisetti P; Tejay S; Adam BA; Sutendra G; Li X; Zemp RJ
    Sci Adv; 2024 Oct; 10(42):eadl5729. PubMed ID: 39423271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.