These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33154527)
1. Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels. Nanda S; Yuan SY; Lai FX; Wang WX; Fu Q; Wan PJ Sci Rep; 2020 Nov; 10(1):19093. PubMed ID: 33154527 [TBL] [Abstract][Full Text] [Related]
2. Differential Responses of Nanda S; Wan PJ; Yuan SY; Lai FX; Wang WX; Fu Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551584 [TBL] [Abstract][Full Text] [Related]
3. Defense Regulatory Network Associated with circRNA in Rice in Response to Brown Planthopper Infestation. Yang HH; Wang YX; Xiao J; Jia YF; Liu F; Wang WX; Wei Q; Lai FX; Fu Q; Wan PJ Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337906 [TBL] [Abstract][Full Text] [Related]
4. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. Tan J; Wu Y; Guo J; Li H; Zhu L; Chen R; He G; Du B BMC Genomics; 2020 Feb; 21(1):144. PubMed ID: 32041548 [TBL] [Abstract][Full Text] [Related]
5. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Kang K; Yue L; Xia X; Liu K; Zhang W Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development. Shen W; Cao S; Liu J; Zhang W; Chen J; Li JF Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884461 [TBL] [Abstract][Full Text] [Related]
7. Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants. Wu Y; Lv W; Hu L; Rao W; Zeng Y; Zhu L; He Y; He G Sci Rep; 2017 Aug; 7(1):8712. PubMed ID: 28821824 [TBL] [Abstract][Full Text] [Related]
8. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. Li C; Luo C; Zhou Z; Wang R; Ling F; Xiao L; Lin Y; Chen H BMC Plant Biol; 2017 Feb; 17(1):57. PubMed ID: 28245796 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Li H; Zhou Z; Hua H; Ma W Int J Biol Macromol; 2020 Nov; 163():2270-2285. PubMed ID: 32971164 [TBL] [Abstract][Full Text] [Related]
10. Characteristic Dissection of Jia Y; Li C; Li Q; Liu P; Liu D; Liu Z; Wang Y; Jiang G; Zhai W Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991765 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. Ji R; Yu H; Fu Q; Chen H; Ye W; Li S; Lou Y PLoS One; 2013; 8(11):e79612. PubMed ID: 24244529 [TBL] [Abstract][Full Text] [Related]
12. Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Zha W; Zhou L; Li S; Liu K; Yang G; Chen Z; Liu K; Xu H; Li P; Hussain S; You A Gene; 2016 Dec; 595(1):83-91. PubMed ID: 27693372 [TBL] [Abstract][Full Text] [Related]
13. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. Kobayashi T J Insect Physiol; 2016 Jan; 84():32-39. PubMed ID: 26668110 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic and transcriptomic responses of two Nilaparvata lugens populations to the Mudgo rice containing Bph1. Wan PJ; Zhou RN; Nanda S; He JC; Yuan SY; Wang WX; Lai FX; Fu Q Sci Rep; 2019 Oct; 9(1):14049. PubMed ID: 31575938 [TBL] [Abstract][Full Text] [Related]
15. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Ren J; Gao F; Wu X; Lu X; Zeng L; Lv J; Su X; Luo H; Ren G Sci Rep; 2016 Nov; 6():37645. PubMed ID: 27876888 [TBL] [Abstract][Full Text] [Related]
16. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Park DS; Lee SK; Lee JH; Song MY; Song SY; Kwak DY; Yeo US; Jeon NS; Park SK; Yi G; Song YC; Nam MH; Ku YC; Jeon JS Theor Appl Genet; 2007 Aug; 115(4):537-47. PubMed ID: 17585380 [TBL] [Abstract][Full Text] [Related]
17. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. Wang Y; Guo H; Li H; Zhang H; Miao X BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240 [TBL] [Abstract][Full Text] [Related]
18. A Comprehensive Analysis of MicroRNAs Expressed in Susceptible and Resistant Rice Cultivars during Chopperla R; Mangrauthia SK; Bhaskar Rao T; Balakrishnan M; Balachandran SM; Prakasam V; Channappa G Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33120987 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice. Liu K; Ma X; Zhao L; Lai X; Chen J; Lang X; Han Q; Wan X; Li C BMC Plant Biol; 2023 Jul; 23(1):367. PubMed ID: 37480003 [TBL] [Abstract][Full Text] [Related]
20. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. Ge Y; Han J; Zhou G; Xu Y; Ding Y; Shi M; Guo C; Wu G Planta; 2018 Oct; 248(4):813-826. PubMed ID: 29934776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]