These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33154608)

  • 1. Raman amplification in the ultra-small limit of Ag nanoparticles on SiO
    Cortijo-Campos S; Ramírez-Jiménez R; Climent-Pascual E; Aguilar-Pujol M; Jiménez-Villacorta F; Martínez L; Jiménez-Riobóo R; Prieto C; de Andrés A
    Mater Des; 2020 Jul; 192():108702. PubMed ID: 33154608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver Nanoparticle-Decorated Silica Nanospheres and Arrays as Potential Substrates for Surface-Enhanced Raman Scattering.
    Li J; Xu Y; Tian L; Yan Y; Niu L; Li X; Zhang Z
    ACS Omega; 2021 Dec; 6(48):32879-32887. PubMed ID: 34901638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-enhanced photoluminescence and Raman spectroscopy of silver nanoparticles grown by solid state dewetting.
    Gangwar MS; Agarwal P
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37130524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles.
    Ujihara M; Dang NM; Imae T
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering.
    Li X; Tay BK; Li J; Tan D; Tan CW; Liang K
    Nanoscale Res Lett; 2012 Apr; 7(1):205. PubMed ID: 22471923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate.
    Lu Y; Liu GL; Lee LP
    Nano Lett; 2005 Jan; 5(1):5-9. PubMed ID: 15792403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Heterostructures for Combined Interference and Plasmon Resonance Raman Amplification.
    Alvarez-Fraga L; Climent-Pascual E; Aguilar-Pujol M; Ramírez-Jiménez R; Jiménez-Villacorta F; Prieto C; de Andrés A
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4119-4125. PubMed ID: 28054769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.
    Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates.
    Li Z; Meng G; Huang Q; Hu X; He X; Tang H; Wang Z; Li F
    Small; 2015 Oct; 11(40):5452-9. PubMed ID: 26313309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Control Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles To Realize Surface-Enhanced Raman Scattering Uniformity and Reproducibility.
    Xing L; Xiahou Y; Zhang P; Du W; Xia H
    ACS Appl Mater Interfaces; 2019 May; 11(19):17637-17646. PubMed ID: 30997986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles.
    Zhao Y; Yang D; Li X; Liu Y; Hu X; Zhou D; Lu Y
    Nanoscale; 2017 Jan; 9(3):1087-1096. PubMed ID: 27973628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots.
    Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing.
    Aguilar-Pujol M; Ramírez-Jiménez R; Xifre-Perez E; Cortijo-Campos S; Bartolomé J; Marsal LF; de Andrés A
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.