These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33154964)
1. Mechano-Regulation of Trabecular Bone Adaptation Is Controlled by the Local Scheuren AC; Vallaster P; Kuhn GA; Paul GR; Malhotra A; Kameo Y; Müller R Front Bioeng Biotechnol; 2020; 8():566346. PubMed ID: 33154964 [TBL] [Abstract][Full Text] [Related]
2. Mechanostat parameters estimated from time-lapsed Marques FC; Boaretti D; Walle M; Scheuren AC; Schulte FA; Müller R Front Bioeng Biotechnol; 2023; 11():1140673. PubMed ID: 37113673 [TBL] [Abstract][Full Text] [Related]
3. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Webster D; Wirth A; van Lenthe GH; Müller R Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383 [TBL] [Abstract][Full Text] [Related]
4. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278 [TBL] [Abstract][Full Text] [Related]
5. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study. Webster D; Schulte FA; Lambers FM; Kuhn G; Müller R J Biomech; 2015 Mar; 48(5):866-74. PubMed ID: 25601212 [TBL] [Abstract][Full Text] [Related]
6. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411 [TBL] [Abstract][Full Text] [Related]
7. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577 [TBL] [Abstract][Full Text] [Related]
8. Mechanoregulated trabecular bone adaptation: Progress report on Smotrova E; Li S; Silberschmidt VV Biomater Biosyst; 2022 Aug; 7():100058. PubMed ID: 36824485 [No Abstract] [Full Text] [Related]
9. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292 [TBL] [Abstract][Full Text] [Related]
10. The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ruimerman R; Van Rietbergen B; Hilbers P; Huiskes R Ann Biomed Eng; 2005 Jan; 33(1):71-8. PubMed ID: 15709707 [TBL] [Abstract][Full Text] [Related]
11. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Birkhold AI; Razi H; Duda GN; Checa S; Willie BM Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894 [TBL] [Abstract][Full Text] [Related]
12. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Schulte FA; Lambers FM; Kuhn G; Müller R Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723 [TBL] [Abstract][Full Text] [Related]
13. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography. Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010 [TBL] [Abstract][Full Text] [Related]
14. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784 [TBL] [Abstract][Full Text] [Related]
15. Spatial relationships between bone formation and mechanical stress within cancellous bone. Cresswell EN; Goff MG; Nguyen TM; Lee WX; Hernandez CJ J Biomech; 2016 Jan; 49(2):222-8. PubMed ID: 26706721 [TBL] [Abstract][Full Text] [Related]
16. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study. Cheong VS; Roberts BC; Kadirkamanathan V; Dall'Ara E Acta Biomater; 2020 Oct; 116():302-317. PubMed ID: 32911105 [TBL] [Abstract][Full Text] [Related]
17. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements. Wang ML; Massie J; Perry A; Garfin SR; Kim CW Spine J; 2007; 7(4):466-74. PubMed ID: 17630145 [TBL] [Abstract][Full Text] [Related]
18. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Weatherholt AM; Fuchs RK; Warden SJ Bone; 2013 Jan; 52(1):372-9. PubMed ID: 23111313 [TBL] [Abstract][Full Text] [Related]
19. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456 [TBL] [Abstract][Full Text] [Related]
20. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Birmingham E; Kreipke TC; Dolan EB; Coughlin TR; Owens P; McNamara LM; Niebur GL; McHugh PE Ann Biomed Eng; 2015 Apr; 43(4):1036-50. PubMed ID: 25281407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]