These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 33154965)
1. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Shao F; Yu L; Zhang Y; An C; Zhang H; Zhang Y; Xiong Y; Wang H Front Bioeng Biotechnol; 2020; 8():583065. PubMed ID: 33154965 [TBL] [Abstract][Full Text] [Related]
2. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. An C; Liu W; Zhang Y; Pang B; Liu H; Zhang Y; Zhang H; Zhang L; Liao H; Ren C; Wang H Acta Biomater; 2020 Jul; 111():181-196. PubMed ID: 32450230 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery. Marquis M; Alix V; Capron I; Cuenot S; Zykwinska A ACS Biomater Sci Eng; 2016 Apr; 2(4):535-543. PubMed ID: 33465857 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic-templating alginate microgels crosslinked by different metal ions as engineered microenvironment to regulate stem cell behavior for osteogenesis. Zhang Y; An C; Zhang Y; Zhang H; Mohammad AF; Li Q; Liu W; Shao F; Sui J; Ren C; Sun K; Cheng F; Liu J; Wang H Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112497. PubMed ID: 34857283 [TBL] [Abstract][Full Text] [Related]
5. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Mohajeri M; Eskandari M; Ghazali ZS; Ghazali HS Biomed Phys Eng Express; 2022 Feb; 8(2):. PubMed ID: 35073537 [TBL] [Abstract][Full Text] [Related]
6. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Choe G; Kim SW; Park J; Park J; Kim S; Kim YS; Ahn Y; Jung DW; Williams DR; Lee JY Biomaterials; 2019 Dec; 225():119513. PubMed ID: 31569016 [TBL] [Abstract][Full Text] [Related]
7. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device. Liu D; Xuanyuan T; Liu X; Fu W; Liu W Front Bioeng Biotechnol; 2023; 11():1281375. PubMed ID: 38033813 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Zhang L; Chen K; Zhang H; Pang B; Choi CH; Mao AS; Liao H; Utech S; Mooney DJ; Wang H; Weitz DA Small; 2018 Mar; 14(9):. PubMed ID: 29334173 [TBL] [Abstract][Full Text] [Related]
10. 3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels. Cai S; Shi H; Li G; Xue Q; Zhao L; Wang F; Hu B Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614763 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic On-Chip Production of Alginate Hydrogels Using Double Coflow Geometry. Sattari A; Janfaza S; Mashhadi Keshtiban M; Tasnim N; Hanafizadeh P; Hoorfar M ACS Omega; 2021 Oct; 6(40):25964-25971. PubMed ID: 34660958 [TBL] [Abstract][Full Text] [Related]
12. Microfluidics single-cell encapsulation reveals that poly-l-lysine-mediated stem cell adhesion to alginate microgels is crucial for cell-cell crosstalk and its self-renewal. Soleymani H; Ghorbani M; Sedghi M; Allahverdi A; Naderi-Manesh H Int J Biol Macromol; 2024 Aug; 274(Pt 2):133418. PubMed ID: 38936577 [TBL] [Abstract][Full Text] [Related]
13. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. Ling SD; Liu Z; Ma W; Chen Z; Du Y; Xu J Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005055 [TBL] [Abstract][Full Text] [Related]
14. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation. Huang KS; Lai TH; Lin YC Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282 [TBL] [Abstract][Full Text] [Related]
15. Gravity-Oriented Microfluidic Device for Biocompatible End-to-End Fabrication of Cell-Laden Microgels. Chen S; Wu Z; Zhang Q; Li Y; Yao H; Chen S; Xie T; Lin JM Small; 2024 Jun; 20(24):e2306725. PubMed ID: 38287726 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation and release of egg white protein in alginate microgels: Impact of pH and thermal treatment. Su Y; Gu L; Zhang Z; Chang C; Li J; McClements DJ; Yang Y Food Res Int; 2019 Jun; 120():305-311. PubMed ID: 31000243 [TBL] [Abstract][Full Text] [Related]
17. Droplet Microfluidics-Assisted Fabrication of Shape Controllable Iron-Alginate Microgels with Fluorescent Property. Chen J; Shen H; Heng Y; Wang S; Ardekani A; Yang Y; Hu Y Macromol Rapid Commun; 2024 Jul; 45(14):e2400084. PubMed ID: 38653451 [TBL] [Abstract][Full Text] [Related]
18. Single-Step Synthesis of Alginate Microgels Enveloped with a Covalent Polymeric Shell: A Simple Way to Protect Encapsulated Cells. Ahn SH; Rath M; Tsao CY; Bentley WE; Raghavan SR ACS Appl Mater Interfaces; 2021 Apr; 13(16):18432-18442. PubMed ID: 33871957 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry. Kim S; Oh J; Cha C Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957 [TBL] [Abstract][Full Text] [Related]
20. An Wang S; Bruning A; Jeon O; Long F; Alsberg E; Choi CK Biomicrofluidics; 2018 Jan; 12(1):014106. PubMed ID: 29375727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]