These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33154965)

  • 41. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine.
    Xu M; Qin M; Cheng Y; Niu X; Kong J; Zhang X; Huang D; Wang H
    Carbohydr Polym; 2021 Aug; 266():118128. PubMed ID: 34044944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium.
    Nan L; Yang Z; Lyu H; Lau KYY; Shum HC
    Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications.
    Mehraji S; Saadatmand M; Eskandari M
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):129685. PubMed ID: 38394762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.
    Madrigal JL; Sharma SN; Campbell KT; Stilhano RS; Gijsbers R; Silva EA
    Acta Biomater; 2018 Mar; 69():265-276. PubMed ID: 29398644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidics-based generation of cell encapsulated microbeads in the presence of electric fields and spatio-temporal viability studies.
    Eqbal MD; Naaz F; Sharma K; Gundabala V
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112065. PubMed ID: 34478958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photo-crosslinkable hyaluronic acid microgels with reactive oxygen species scavenging capacity for mesenchymal stem cell encapsulation.
    Hao S; Tian C; Bai Y; Wu L; Hao L; Kuang Y; Yang S; Mao H; Gu Z
    Int J Biol Macromol; 2023 Jul; 243():124971. PubMed ID: 37236562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic Templating of Spatially Inhomogeneous Protein Microgels.
    Xu Y; Jacquat RPB; Shen Y; Vigolo D; Morse D; Zhang S; Knowles TPJ
    Small; 2020 Aug; 16(32):e2000432. PubMed ID: 32529798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
    Liu Y; Nambu NO; Taya M
    Biomed Microdevices; 2017 Sep; 19(3):55. PubMed ID: 28612283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell.
    Choi CH; Wang H; Lee H; Kim JH; Zhang L; Mao A; Mooney DJ; Weitz DA
    Lab Chip; 2016 Apr; 16(9):1549-55. PubMed ID: 27070224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique.
    Kim ES; Lee JS; Lee HG
    Food Sci Biotechnol; 2016; 25(5):1337-1343. PubMed ID: 30263414
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics.
    Jung SH; Bulut S; Busca Guerzoni LPB; Günther D; Braun S; De Laporte L; Pich A
    J Colloid Interface Sci; 2022 Jul; 617():409-421. PubMed ID: 35279576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions.
    Ma D; Tu ZC; Wang H; Zhang Z; McClements DJ
    J Agric Food Chem; 2018 Apr; 66(15):3930-3938. PubMed ID: 29595967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Microfluidic Strategy for Controllable Generation of Water-in-Water Droplets as Biocompatible Microcarriers.
    Liu HT; Wang H; Wei WB; Liu H; Jiang L; Qin JH
    Small; 2018 Sep; 14(36):e1801095. PubMed ID: 30091845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties.
    Kuo CK; Ma PX
    Biomaterials; 2001 Mar; 22(6):511-21. PubMed ID: 11219714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.
    Zhao C; Zhang C; Kang H; Xia Y; Sui K; Liu R
    Carbohydr Polym; 2017 Aug; 169():206-212. PubMed ID: 28504137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic production of biopolymer microcapsules with controlled morphology.
    Zhang H; Tumarkin E; Peerani R; Nie Z; Sullan RM; Walker GC; Kumacheva E
    J Am Chem Soc; 2006 Sep; 128(37):12205-10. PubMed ID: 16967971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics.
    Kesselman LR; Shinwary S; Selvaganapathy PR; Hoare T
    Small; 2012 Apr; 8(7):1092-8. PubMed ID: 22354786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.