BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33155001)

  • 1. Significantly enhancing the lithium-ion conductivity of solid-state electrolytes via a strategy for fabricating hollow metal-organic frameworks.
    Liu Z; Liu P; Tian L; Xiao J; Cui R; Liu Z
    Chem Commun (Camb); 2020 Dec; 56(93):14629-14632. PubMed ID: 33155001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant improvement of the lithium-ion conductivity of solid-state electrolytes by fabricating large pore volume hollow ZIF-8.
    Tian L; Liu Z; Tao F; Liu M; Liu Z
    Dalton Trans; 2021 Oct; 50(39):13877-13882. PubMed ID: 34523647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries.
    Liu Z; Chen W; Zhang F; Wu F; Chen R; Li L
    Small; 2023 May; 19(18):e2206655. PubMed ID: 36737835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties.
    Dong P; Zhang X; Hiscox W; Liu J; Zamora J; Li X; Su M; Zhang Q; Guo X; McCloy J; Song MK
    Adv Mater; 2023 Aug; 35(32):e2211841. PubMed ID: 37130704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significantly Enhancing the Lithium Ionic Conductivity of Metal-Organic Frameworks via a Postsynthetic Modification Strategy.
    Tian L; Xu X; Liu M; Liu Z; Liu Z
    Langmuir; 2021 Apr; 37(13):3922-3928. PubMed ID: 33760624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to improve the ionic conductivity of quasi-solid-state electrolytes based on metal-organic frameworks.
    Chen C; Luo X
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38810610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of thiol-lithium ion interaction in metal-organic framework for high-performance quasi-solid lithium metal batteries.
    Zhang Q; Xiao Y; Li Q; Wang J; Guo S; Li X; Ouyang Y; Zeng Q; He W; Huang S
    Dalton Trans; 2021 Mar; 50(8):2928-2935. PubMed ID: 33650596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.
    Shen L; Wu HB; Liu F; Brosmer JL; Shen G; Wang X; Zink JI; Xiao Q; Cai M; Wang G; Lu Y; Dunn B
    Adv Mater; 2018 Jun; 30(23):e1707476. PubMed ID: 29707850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Enhancing Low Temperature Performances of Lithium-Ion Transport for Metal-Organic Framework-Based Solid-State Electrolyte: Nanostructure Engineering or Crystal Morphology Controlling.
    Wang X; Jin S; Shi L; Zhang N; Guo J; Zhang D; Liu Z
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33954-33962. PubMed ID: 38904988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal-organic frameworks.
    Zhang Q; Li D; Wang J; Guo S; Zhang W; Chen D; Li Q; Rui X; Gan L; Huang S
    Nanoscale; 2020 Apr; 12(13):6976-6982. PubMed ID: 32207474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries.
    Wang X; Jin S; Liu Z
    Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium-Ion Batteries.
    Du M; Rui K; Chang Y; Zhang Y; Ma Z; Sun W; Yan Q; Zhu J; Huang W
    Small; 2018 Jan; 14(2):. PubMed ID: 29165932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of CoS
    Yu L; Yang JF; Lou XW
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13422-13426. PubMed ID: 27529334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On enhancing the Li-ion conductivity of quasi-solid-state electrolytes by suppressing the flexibility of zeolitic imidazolate framework-8
    Utpalla P; Mor J; Sharma SK
    Phys Chem Chem Phys; 2023 Feb; 25(5):3959-3968. PubMed ID: 36648501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Ion Transport Paths at the Interface of Metal-Organic Framework Modified Solid Electrolyte.
    Xia Y; Xu N; Du L; Cheng Y; Lei S; Li S; Liao X; Shi W; Xu L; Mai L
    ACS Appl Mater Interfaces; 2020 May; 12(20):22930-22938. PubMed ID: 32348110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries.
    Zhu F; Bao H; Wu X; Tao Y; Qin C; Su Z; Kang Z
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43206-43213. PubMed ID: 31651145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries.
    Wu JF; Guo X
    Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the New Role of Metal-Organic Frameworks in Designing Silicon Hollow Nanocages for High-Energy Lithium-Ion Batteries.
    Xue H; Wu Y; Wang Z; Shen Y; Sun Q; Liu G; Yin D; Wang L; Li Q; Ming J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40471-40480. PubMed ID: 34404202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Two-Dimensional Metal-Organic Framework on Molecular Basis for Fast Li
    Yu J; Guo T; Wang C; Shen Z; Dong X; Li S; Zhang H; Lu Z
    Nano Lett; 2021 Jul; 21(13):5805-5812. PubMed ID: 34128686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.