These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33155054)

  • 21. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.
    Xue L; Almario J; FabiaƄska I; Saridis G; Bucher M
    New Phytol; 2019 Oct; 224(1):409-420. PubMed ID: 31125425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in actinorhizal symbiosis signaling.
    Froussart E; Bonneau J; Franche C; Bogusz D
    Plant Mol Biol; 2016 Apr; 90(6):613-22. PubMed ID: 26873697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Legumes-The art and science of environmentally sustainable agriculture.
    Foyer CH; Nguyen H; Lam HM
    Plant Cell Environ; 2019 Jan; 42(1):1-5. PubMed ID: 30575076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A private channel of nitrogen alleviates interspecific competition for an annual legume.
    Elias JD; Agrawal AA
    Ecology; 2021 Sep; 102(9):e03449. PubMed ID: 34166532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life histories of symbiotic rhizobia and mycorrhizal fungi.
    Denison RF; Kiers ET
    Curr Biol; 2011 Sep; 21(18):R775-85. PubMed ID: 21959168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules.
    Gavrilovic S; Yan Z; Jurkiewicz AM; Stougaard J; Markmann K
    Plant Methods; 2016; 12():4. PubMed ID: 26807140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling.
    Moyano G; Marco D; Knopoff D; Torres G; Turner C
    Math Biosci; 2017 Oct; 292():30-35. PubMed ID: 28711576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symbiosis limits establishment of legumes outside their native range at a global scale.
    Simonsen AK; Dinnage R; Barrett LG; Prober SM; Thrall PH
    Nat Commun; 2017 Apr; 8():14790. PubMed ID: 28387250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses.
    Lipa P; Janczarek M
    PeerJ; 2020; 8():e8466. PubMed ID: 32095335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia.
    Garrido-Oter R; Nakano RT; Dombrowski N; Ma KW; ; McHardy AC; Schulze-Lefert P
    Cell Host Microbe; 2018 Jul; 24(1):155-167.e5. PubMed ID: 30001518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species.
    Sui XL; Zhang T; Tian YQ; Xue RJ; Li AR
    New Phytol; 2019 Jan; 221(1):470-481. PubMed ID: 30078224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Legume-Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments.
    Goyal RK; Habtewold JZ
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?
    Genre A; Russo G
    Front Plant Sci; 2016; 7():96. PubMed ID: 26909085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts.
    Ossler JN; Zielinski CA; Heath KD
    Am J Bot; 2015 Aug; 102(8):1332-41. PubMed ID: 26290556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling in the arbuscular mycorrhizal symbiosis.
    Harrison MJ
    Annu Rev Microbiol; 2005; 59():19-42. PubMed ID: 16153162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Home sweet home: how mutualistic microbes modify root development to promote symbiosis.
    Ghahremani M; MacLean AM
    J Exp Bot; 2021 Mar; 72(7):2275-2287. PubMed ID: 33369646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments.
    Xiao X; Chen W; Zong L; Yang J; Jiao S; Lin Y; Wang E; Wei G
    Mol Ecol; 2017 Mar; 26(6):1641-1651. PubMed ID: 28139080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth.
    Jiao S; Chen W; Wei G
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compartmentalisation: A strategy for optimising symbiosis and tradeoff management.
    Mohd-Radzman NA; Drapek C
    Plant Cell Environ; 2023 Oct; 46(10):2998-3011. PubMed ID: 36717758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.