These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 33155284)
1. High Magnesium Calcite and Dolomite composition carbonate in Amphiroa (Lithophyllaceae, Corallinales, Rhodophyta): further documentation of elevated Mg in Corallinales with climate change implications. Nash MC; Adey W; Harvey AS J Phycol; 2021 Apr; 57(2):496-509. PubMed ID: 33155284 [TBL] [Abstract][Full Text] [Related]
2. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales) Nash MC; Adey W J Phycol; 2017 Oct; 53(5):970-984. PubMed ID: 28671731 [TBL] [Abstract][Full Text] [Related]
3. Coralline algal calcification: A morphological and process-based understanding. Nash MC; Diaz-Pulido G; Harvey AS; Adey W PLoS One; 2019; 14(9):e0221396. PubMed ID: 31557180 [TBL] [Abstract][Full Text] [Related]
4. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification. de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967 [TBL] [Abstract][Full Text] [Related]
5. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
6. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
7. A Raman spectroscopic comparison of calcite and dolomite. Sun J; Wu Z; Cheng H; Zhang Z; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():158-62. PubMed ID: 23988531 [TBL] [Abstract][Full Text] [Related]
8. Effects of lower surface ocean pH upon the stability of shallow water carbonate sediments. Tynan S; Opdyke BN Sci Total Environ; 2011 Feb; 409(6):1082-6. PubMed ID: 21211824 [TBL] [Abstract][Full Text] [Related]
9. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Diaz-Pulido G; Nash MC; Anthony KR; Bender D; Opdyke BN; Reyes-Nivia C; Troitzsch U Nat Commun; 2014; 5():3310. PubMed ID: 24518160 [TBL] [Abstract][Full Text] [Related]
10. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
11. Interplay of microbial communities with mineral environments in coralline algae. Valdespino-Castillo PM; Bautista-García A; Favoretto F; Merino-Ibarra M; Alcántara-Hernández RJ; Pi-Puig T; Castillo FS; Espinosa-Matías S; Holman HY; Blanco-Jarvio A Sci Total Environ; 2021 Feb; 757():143877. PubMed ID: 33316514 [TBL] [Abstract][Full Text] [Related]
12. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764 [TBL] [Abstract][Full Text] [Related]
13. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Roberts JA; Kenward PA; Fowle DA; Goldstein RH; González LA; Moore DS Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14540-5. PubMed ID: 23964124 [TBL] [Abstract][Full Text] [Related]
14. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Stanley SM; Ries JB; Hardie LA Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15323-6. PubMed ID: 12399549 [TBL] [Abstract][Full Text] [Related]
15. Organic Controls over Biomineral Ca-Mg Carbonate Compositions and Morphologies. Fang Y; Lee S; Xu H; Farfan GA Cryst Growth Des; 2023 Jul; 23(7):4872-4882. PubMed ID: 37426546 [TBL] [Abstract][Full Text] [Related]
16. Low-Temperature Synthesis of Disordered Dolomite and High-Magnesium Calcite in Ethanol-Water Solutions: The Solvation Effect and Implications. Fang Y; Zhang F; Farfan GA; Xu H ACS Omega; 2022 Jan; 7(1):281-292. PubMed ID: 35036699 [TBL] [Abstract][Full Text] [Related]
17. Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite. Marsili E; Beyenal H; Di Palma L; Merli C; Dohnalkova A; Amonette JE; Lewandowski Z Environ Sci Technol; 2007 Dec; 41(24):8349-54. PubMed ID: 18200862 [TBL] [Abstract][Full Text] [Related]
18. Aragonite dissolution protects calcite at the seafloor. Sulpis O; Agrawal P; Wolthers M; Munhoven G; Walker M; Middelburg JJ Nat Commun; 2022 Mar; 13(1):1104. PubMed ID: 35232971 [TBL] [Abstract][Full Text] [Related]
19. Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta). Nash MC; Russell BD; Dixon KR; Liu M; Xu H J Phycol; 2015 Jun; 51(3):403-7. PubMed ID: 26986657 [TBL] [Abstract][Full Text] [Related]
20. Disordered dolomite as an unusual biomineralization product found in the center of a natural Cassis pearl. Zhou C; Jin S; Sun Z; Homkrajae A; Myagkaya E; Nilpetploy N; Lawanwong K PLoS One; 2023; 18(4):e0284295. PubMed ID: 37099494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]