These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33155350)

  • 1. An integral insight into pollen wall development: involvement of physical processes in exine ontogeny in Calycanthus floridus L., with an experimental approach.
    Gabarayeva NI; Grigorjeva VV
    Plant J; 2021 Feb; 105(3):736-753. PubMed ID: 33155350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly as the underlying mechanism for exine development in Larix decidua D. C.
    Gabarayeva NI; Grigorjeva VV
    Planta; 2017 Sep; 246(3):471-493. PubMed ID: 28477281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollen wall development in Hydrangea bretschneiderii Dippel. (Hydrangeaceae): advanced interpretation through physical input, with in vitro experimental verification.
    Grigorjeva VV; Polevova SV; Gabarayeva NI
    Protoplasma; 2021 Mar; 258(2):431-447. PubMed ID: 33141314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogenesis in miniature. Pollen wall development in Campanula rapunculoides.
    Gabarayeva NI; Grigorjeva VV; Polevova SV; Britski DA
    Planta; 2023 Jul; 258(2):38. PubMed ID: 37410162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembling the thickest plant cell wall: exine development in Echinops (Asteraceae, Cynareae).
    Gabarayeva NI; Polevova SV; Grigorjeva VV; Blackmore S
    Planta; 2018 Aug; 248(2):323-346. PubMed ID: 29725817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollen wall ontogeny in Polemonium caeruleum (Polemoniaceae) and suggested underlying mechanisms of development.
    Grigorjeva VV; Gabarayeva N
    Protoplasma; 2018 Jan; 255(1):109-128. PubMed ID: 28667410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial pollen walls simulated by the tandem processes of phase separation and self-assembly in vitro.
    Gabarayeva NI; Grigorjeva VV; Lavrentovich MO
    New Phytol; 2020 Mar; 225(5):1956-1973. PubMed ID: 31705762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suggested mechanisms underlying pollen wall development in Ambrosia trifida (Asteraceae: Heliantheae).
    Gabarayeva N; Polevova S; Grigorjeva V; Severova E; Volkova O; Blackmore S
    Protoplasma; 2019 Mar; 256(2):555-574. PubMed ID: 30341717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pollen wall and tapetal development in Cymbalaria muralis: the role of physical processes, evidenced by in vitro modelling.
    Polevova SV; Grigorjeva VV; Gabarayeva NI
    Protoplasma; 2023 Jan; 260(1):281-298. PubMed ID: 35657502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking pollen and spore walls: self-assembly in action.
    Gabarayeva NI; Grigorjeva VV; Shavarda AL
    Ann Bot; 2019 Jul; 123(7):1205-1218. PubMed ID: 31220198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollen wall development in Impatiens glandulifera: exine substructure and underlying mechanisms.
    Gabarayeva NI; Britski DA; Grigorjeva VV
    Protoplasma; 2024 Jan; 261(1):111-124. PubMed ID: 37542569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of pollen wall development in Lysimachia vulgaris.
    Gabarayeva NI; Grigorjeva VV; Britski DA
    Protoplasma; 2024 Jul; ():. PubMed ID: 39037466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation.
    Gabarayeva NI; Grigorjeva VV
    Protoplasma; 2014 Nov; 251(6):1321-45. PubMed ID: 24671645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sporoderm development in Acer tataricum (Aceraceae): an interpretation.
    Gabarayeva NI; Grigorjeva VV; Rowley JR
    Protoplasma; 2010 Nov; 247(1-2):65-81. PubMed ID: 20431899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new look at sporoderm ontogeny in Persea americana and the hidden side of development.
    Gabarayeva NI; Grigorjeva VV; Rowley JR
    Ann Bot; 2010 Jun; 105(6):939-55. PubMed ID: 20400758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].
    Gabaraeva NI; Hemsley AR
    Zh Obshch Biol; 2010; 71(4):310-36. PubMed ID: 20865932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning.
    Li WL; Liu Y; Douglas CJ
    Plant Physiol; 2017 Jan; 173(1):167-182. PubMed ID: 27495941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glycine-rich protein that facilitates exine formation during tomato pollen development.
    McNeil KJ; Smith AG
    Planta; 2010 Mar; 231(4):793-808. PubMed ID: 20033228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon.
    Sharma A; Singh MB; Bhalla PL
    Protoplasma; 2015 Nov; 252(6):1575-86. PubMed ID: 25772681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollen wall development in flowering plants.
    Blackmore S; Wortley AH; Skvarla JJ; Rowley JR
    New Phytol; 2007; 174(3):483-498. PubMed ID: 17447905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.