These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 33155428)
1. Construction of Donor-Acceptor Heterojunctions in Covalent Organic Framework for Enhanced CO Wu Q; Mao MJ; Wu QJ; Liang J; Huang YB; Cao R Small; 2021 Jun; 17(22):e2004933. PubMed ID: 33155428 [TBL] [Abstract][Full Text] [Related]
2. Conductive Phthalocyanine-Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide. Zhang MD; Si DH; Yi JD; Zhao SS; Huang YB; Cao R Small; 2020 Dec; 16(52):e2005254. PubMed ID: 33258281 [TBL] [Abstract][Full Text] [Related]
3. Zn (II) Porphyrin Built-in D-A Covalent Organic Framework for Efficient Photocatalytic H Lv M; Ren X; Cao R; Chang Z; Chang X; Bai F; Li Y Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433020 [TBL] [Abstract][Full Text] [Related]
4. Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Han B; Jin Y; Chen B; Zhou W; Yu B; Wei C; Wang H; Wang K; Chen Y; Chen B; Jiang J Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202114244. PubMed ID: 34716743 [TBL] [Abstract][Full Text] [Related]
5. Photocoupled Electroreduction of CO Wu QJ; Si DH; Ye S; Dong YL; Cao R; Huang YB J Am Chem Soc; 2023 Sep; 145(36):19856-19865. PubMed ID: 37653575 [TBL] [Abstract][Full Text] [Related]
6. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Han B; Ding X; Yu B; Wu H; Zhou W; Liu W; Wei C; Chen B; Qi D; Wang H; Wang K; Chen Y; Chen B; Jiang J J Am Chem Soc; 2021 May; 143(18):7104-7113. PubMed ID: 33939427 [TBL] [Abstract][Full Text] [Related]
7. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012 [TBL] [Abstract][Full Text] [Related]
8. Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor-Acceptor Interaction. Xu X; Yue Y; Xin G; Huang N Macromol Rapid Commun; 2023 Jun; 44(11):e2200715. PubMed ID: 36333909 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione. Li G; Ma W; Yang Y; Zhong C; Huang H; Ouyang D; He Y; Tian W; Lin J; Lin Z ACS Appl Mater Interfaces; 2021 Oct; 13(41):49482-49489. PubMed ID: 34636536 [TBL] [Abstract][Full Text] [Related]
10. Elaborate Modulating Binding Strength of Intermediates via Three-component Covalent Organic Frameworks for CO Liu M; Cui CX; Yang S; Yang X; Li X; He J; Xu Q; Zeng G Angew Chem Int Ed Engl; 2024 May; 63(20):e202401750. PubMed ID: 38407379 [TBL] [Abstract][Full Text] [Related]
11. Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. Lu Y; Zhang J; Wei W; Ma DD; Wu XT; Zhu QL ACS Appl Mater Interfaces; 2020 Aug; 12(34):37986-37992. PubMed ID: 32805976 [TBL] [Abstract][Full Text] [Related]
12. Cobalt-Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Units as Photocatalysts for Carbon Dioxide Reduction. Kim YH; Jeon JP; Kim Y; Noh HJ; Seo JM; Kim J; Lee G; Baek JB Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202307991. PubMed ID: 37448236 [TBL] [Abstract][Full Text] [Related]
13. Covalent Organic Framework with Donor Lan X; Li H; Liu Y; Zhang Y; Zhang T; Chen Y Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202407092. PubMed ID: 38773811 [TBL] [Abstract][Full Text] [Related]
14. Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO Li M; Han B; Li S; Zhang Q; Zhang E; Gong L; Qi D; Wang K; Jiang J Small; 2024 Jul; 20(30):e2310147. PubMed ID: 38377273 [TBL] [Abstract][Full Text] [Related]
15. CoN Zhai L; Yang S; Lu C; Cui CX; Xu Q; Liu J; Yang X; Meng X; Lu S; Zhuang X; Zeng G; Jiang Z Small; 2022 Aug; 18(32):e2200736. PubMed ID: 35810455 [TBL] [Abstract][Full Text] [Related]
16. Imparting CO Wang YR; Ding HM; Ma XY; Liu M; Yang YL; Chen Y; Li SL; Lan YQ Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202114648. PubMed ID: 34806265 [TBL] [Abstract][Full Text] [Related]
17. Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Diercks CS; Lin S; Kornienko N; Kapustin EA; Nichols EM; Zhu C; Zhao Y; Chang CJ; Yaghi OM J Am Chem Soc; 2018 Jan; 140(3):1116-1122. PubMed ID: 29284263 [TBL] [Abstract][Full Text] [Related]
18. Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO Yi JD; Si DH; Xie R; Yin Q; Zhang MD; Wu Q; Chai GL; Huang YB; Cao R Angew Chem Int Ed Engl; 2021 Jul; 60(31):17108-17114. PubMed ID: 34033203 [TBL] [Abstract][Full Text] [Related]
19. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Qiu XF; Huang JR; Yu C; Zhao ZH; Zhu HL; Ke Z; Liao PQ; Chen XM Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202206470. PubMed ID: 35697663 [TBL] [Abstract][Full Text] [Related]
20. Boosting Electroreduction of CO Wu QJ; Si DH; Wu Q; Dong YL; Cao R; Huang YB Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215687. PubMed ID: 36424351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]