BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33155492)

  • 21. Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells.
    Guo J; Li ZL; Wang AL; Liu XQ; Wang J; Guo X; Jing YK; Hua HM
    Planta Med; 2011 Dec; 77(18):2042-6. PubMed ID: 21796577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors.
    Sujetovienė G; Česynaitė J
    J Toxicol Environ Health A; 2021 Apr; 84(7):273-278. PubMed ID: 33334238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lichen substances prevent lichens from nutrient deficiency.
    Hauck M; Willenbruch K; Leuschner C
    J Chem Ecol; 2009 Jan; 35(1):71-3. PubMed ID: 19151928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JOINT OCCURRENCE OF A LICHEN DEPSIDONE AND ITS PROBABLE DEPSIDE PRECURSOR.
    CULBERSON CF
    Science; 1964 Jan; 143(3603):255-6. PubMed ID: 14077039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two new phenolic compounds from the Vietnamese lichen
    Bui VM; Duong TH; Nguyen TA; Nguyen TN; Nguyen NH; Nguyen HH; Chavasiri W; Nguyen KP; Huynh BL
    Nat Prod Res; 2022 Jul; 36(13):3429-3434. PubMed ID: 33356561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii.
    Schmeda-Hirschmann G; Tapia A; Lima B; Pertino M; Sortino M; Zacchino S; Arias AR; Feresin GE
    Phytother Res; 2008 Mar; 22(3):349-55. PubMed ID: 18058986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introduce lichen Lepraria incana as biomonitor of Cesium-137 from Ramsar, northern Iran.
    Dalvand A; Jahangiri A; Iranmanesh J
    J Environ Radioact; 2016 Aug; 160():36-41. PubMed ID: 27132251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America.
    Werth S; Sork VL
    Am J Bot; 2014 Jul; 101(7):1127-1140. PubMed ID: 25016008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continental and Antarctic Lichens: isolation, identification and molecular modeling of the depside tenuiorin from the Antarctic lichen
    Salgado F; Caballero J; Vargas R; Cornejo A; Areche C
    Nat Prod Res; 2020 Mar; 34(5):646-650. PubMed ID: 30388894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The occurrence of glycolipids in the lichen Ramalina celastri.
    Machado MJ; Gorin PA; Torri G; Iacomini M
    Braz J Med Biol Res; 1994 Feb; 27(2):523-6. PubMed ID: 8081276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen:
    Nugraha AS; Untari LF; Laub A; Porzel A; Franke K; Wessjohann LA
    Nat Prod Res; 2021 Dec; 35(23):5001-5010. PubMed ID: 32375511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spectrophotometric analysis of extracted water-soluble phenolic metabolites of lichens.
    Furmanek Ł; Czarnota P; Tekiela A; Kapusta I; Seaward MRD
    Planta; 2024 Jul; 260(2):40. PubMed ID: 38954049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites.
    Ristic S; Rankovic B; Kosanić M; Stamenkovic S; Stanojković T; Sovrlić M; Manojlović N
    Curr Pharm Biotechnol; 2016; 17(7):651-8. PubMed ID: 27033512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria.
    Biosca EG; Flores R; Santander RD; Díez-Gil JL; Barreno E
    PLoS One; 2016; 11(8):e0160328. PubMed ID: 27494030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites.
    Verma N; Behera BC; Joshi A
    Folia Microbiol (Praha); 2012 Mar; 57(2):107-14. PubMed ID: 22351563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Susceptibility of some clinical isolates of Staphylococcus aureus to bioactive column fractions from the lichen Ramalina farinacea (L.) Ach.
    Esimone CO; Adikwu MU
    Phytother Res; 2002 Aug; 16(5):494-6. PubMed ID: 12203275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β-Orcinol-type depsides from the lichen Thamnolia vermicularis.
    Xiang WJ; Wang QQ; Ma L; Hu LH
    Nat Prod Res; 2013; 27(9):804-8. PubMed ID: 22799538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ DART-MS as a Versatile and Rapid Dereplication Tool in Lichenology: Chemical Fingerprinting of Ophioparma ventosa.
    Le Pogam P; Le Lamer AC; Legouin B; Boustie J; Rondeau D
    Phytochem Anal; 2016 Nov; 27(6):354-363. PubMed ID: 27687704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidation of polysaccharide origin in Ramalina peruviana symbiosis.
    Cordeiro LM; Stocker-Wörgötter E; Gorin PA; Iacomini M
    FEMS Microbiol Lett; 2004 Sep; 238(1):79-84. PubMed ID: 15336406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities.
    Fazio AT; Adler MT; Bertoni MD; Sepúlveda CS; Damonte EB; Maier MS
    Z Naturforsch C J Biosci; 2007; 62(7-8):543-9. PubMed ID: 17913069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.