BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33155500)

  • 1. Med23 Regulates Sox9 Expression during Craniofacial Development.
    Dash S; Bhatt S; Falcon KT; Sandell LL; Trainor PA
    J Dent Res; 2021 Apr; 100(4):406-414. PubMed ID: 33155500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C; Han D; Grimaldi A; Sarrión P; Park SS; Pelikan R; Sanchez-Lara PA; Chai Y
    Development; 2015 Nov; 142(21):3734-45. PubMed ID: 26395480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
    Chen Y; Wang Z; Chen Y; Zhang Y
    Cell Tissue Res; 2019 May; 376(2):199-210. PubMed ID: 30413887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dislocated Tongue Muscle Attachment and Cleft Palate Formation.
    Kouskoura T; El Fersioui Y; Angelini M; Graf D; Katsaros C; Chiquet M
    J Dent Res; 2016 Apr; 95(4):453-9. PubMed ID: 26701347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J; Tung L; Urata M; Hacia JG; Pelikan R; Suzuki A; Ramenzoni L; Chaudhry O; Parada C; Sanchez-Lara PA; Chai Y
    J Biol Chem; 2012 Jan; 287(4):2353-63. PubMed ID: 22123828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z; Liu C; Iwata J; Gu S; Suzuki A; Sun C; He W; Shu R; Li L; Chai Y; Chen Y
    J Biol Chem; 2013 Apr; 288(15):10440-50. PubMed ID: 23460641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered mandibular development precedes the time of palate closure in mice homozygous for disproportionate micromelia: an oral clefting model supporting the Pierre-Robin sequence.
    Ricks JE; Ryder VM; Bridgewater LC; Schaalje B; Seegmiller RE
    Teratology; 2002 Mar; 65(3):116-20. PubMed ID: 11877774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M; Lan Y; Liu H; Wu Z; Imamura T; Jiang R
    Dev Dyn; 2021 Apr; 250(4):562-573. PubMed ID: 33034111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.
    Liu Y; Wang M; Zhao W; Yuan X; Yang X; Li Y; Qiu M; Zhu XJ; Zhang Z
    J Dent Res; 2015 Jul; 94(7):961-7. PubMed ID: 25922332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of LAR family phosphatase genes Ptprs and Ptprf causes craniofacial malformations resembling Pierre-Robin sequence.
    Stewart K; Uetani N; Hendriks W; Tremblay ML; Bouchard M
    Development; 2013 Aug; 140(16):3413-22. PubMed ID: 23863482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H; Yang X; Bao M; Cao H; Miao X; Zhang X; Gan L; Qiu M; Zhang Z
    J Biol Chem; 2016 Mar; 291(13):7107-18. PubMed ID: 26826126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycn deficiency underlies the development of orofacial clefts in mice and humans.
    Yang R; Li R; Huang Z; Zuo Y; Yue H; Wu H; Gu F; Wang F; He M; Bian Z
    Hum Mol Genet; 2022 Mar; 31(5):803-815. PubMed ID: 34590686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development.
    Hill C; Jacobs B; Kennedy L; Rohde S; Zhou B; Baldwin S; Goudy S
    Cell Tissue Res; 2015 Sep; 361(3):711-22. PubMed ID: 25759071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y; Qin C; Jiang R
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sox9CreER-mediated deletion of β-catenin in palatal mesenchyme results in delayed palatal elevation accompanied with repressed canonical Wnt signaling and reduced actin polymerization.
    Pang X; Wang X; Wang Y; Pu L; Shi J; Burdekin N; Shi B; Li C
    Genesis; 2021 Sep; 59(9):e23441. PubMed ID: 34390177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of
    Lv Y; Wang Q; Lin C; Zheng X; Zhang Y; Hu X
    Front Cell Dev Biol; 2024; 12():1376814. PubMed ID: 38694818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple functions of Snail family genes during palate development in mice.
    Murray SA; Oram KF; Gridley T
    Development; 2007 May; 134(9):1789-97. PubMed ID: 17376812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis.
    Lei R; Zhang K; Liu K; Shao X; Ding Z; Wang F; Hong Y; Zhu M; Li H; Li H
    Cell Death Dis; 2016 Jun; 7(6):e2282. PubMed ID: 27362800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.