BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33155500)

  • 41. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development.
    Dash S; Bhatt S; Sandell LL; Seidel CW; Ahn Y; Krumlauf RE; Trainor PA
    Front Physiol; 2020; 11():531933. PubMed ID: 33192541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Cis-ruptions of highly conserved non-coding genomic elements distant from the SOX9 gene in the Pierre Robin sequence].
    Benko S; Gordon CT; Amiel J; Lyonnet S
    Biol Aujourdhui; 2011; 205(2):111-24. PubMed ID: 21831342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature.
    Davidson TB; Sanchez-Lara PA; Randolph LM; Krieger MD; Wu SQ; Panigrahy A; Shimada H; Erdreich-Epstein A
    BMC Med Genet; 2012 Mar; 13():19. PubMed ID: 22436304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facial skeletal morphology in growing children with Pierre Robin sequence.
    Shen YF; Vargervik K; Oberoi S; Chigurupati R
    Cleft Palate Craniofac J; 2012 Sep; 49(5):553-60. PubMed ID: 21121765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deletion of Nf2 in neural crest-derived tongue mesenchyme alters tongue shape and size, Hippo signalling and cell proliferation in a region- and stage-specific manner.
    Ishan M; Chen G; Yu W; Wang Z; Giovannini M; Cao X; Liu HX
    Cell Prolif; 2021 Dec; 54(12):e13144. PubMed ID: 34697858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinoic acid-induced asymmetric craniofacial growth and cleft palate in the TO mouse fetus.
    Padmanabhan R; Ahmed I
    Reprod Toxicol; 1997; 11(6):843-60. PubMed ID: 9407595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients.
    Humphreys R; Zheng W; Prince LS; Qu X; Brown C; Loomes K; Huppert SS; Baldwin S; Goudy S
    Hum Mol Genet; 2012 Mar; 21(6):1374-83. PubMed ID: 22156581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MEMO1 drives cranial endochondral ossification and palatogenesis.
    Van Otterloo E; Feng W; Jones KL; Hynes NE; Clouthier DE; Niswander L; Williams T
    Dev Biol; 2016 Jul; 415(2):278-295. PubMed ID: 26746790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [THE PIERRE ROBIN SYNDROME (MICROGNATHIA, CLEFT PALATE, GLOSSOPTOSIS)].
    CALVANI M; TADDEINI R
    Pediatria (Napoli); 1963; 71():669-90. PubMed ID: 14051039
    [No Abstract]   [Full Text] [Related]  

  • 50. Cilia-dependent GLI processing in neural crest cells is required for tongue development.
    Millington G; Elliott KH; Chang YT; Chang CF; Dlugosz A; Brugmann SA
    Dev Biol; 2017 Apr; 424(2):124-137. PubMed ID: 28286175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of SOX9 in the Etiology of Pierre-Robin Syndrome.
    R S; A MP
    Iran J Basic Med Sci; 2013 May; 16(5):700-4. PubMed ID: 23826492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect.
    He F; Hu X; Xiong W; Li L; Lin L; Shen B; Yang L; Gu S; Zhang Y; Chen Y
    Dev Biol; 2014 Jul; 391(2):170-81. PubMed ID: 24785830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The transcription factor Sox9 is required for cranial neural crest development in Xenopus.
    Spokony RF; Aoki Y; Saint-Germain N; Magner-Fink E; Saint-Jeannet JP
    Development; 2002 Jan; 129(2):421-32. PubMed ID: 11807034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme.
    Li N; Liu J; Liu H; Wang S; Hu P; Zhou H; Xiao J; Liu C
    J Mol Histol; 2021 Feb; 52(1):45-61. PubMed ID: 33159638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sox9 function in craniofacial development and disease.
    Lee YH; Saint-Jeannet JP
    Genesis; 2011 Apr; 49(4):200-8. PubMed ID: 21309066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FAF1, a gene that is disrupted in cleft palate and has conserved function in zebrafish.
    Ghassibe-Sabbagh M; Desmyter L; Langenberg T; Claes F; Boute O; Bayet B; Pellerin P; Hermans K; Backx L; Mansilla MA; Imoehl S; Nowak S; Ludwig KU; Baluardo C; Ferrian M; Mossey PA; Noethen M; Dewerchin M; François G; Revencu N; Vanwijck R; Hecht J; Mangold E; Murray J; Rubini M; Vermeesch JR; Poirel HA; Carmeliet P; Vikkula M
    Am J Hum Genet; 2011 Feb; 88(2):150-61. PubMed ID: 21295280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis.
    Siismets EM; Hatch NE
    J Dev Biol; 2020 Sep; 8(3):. PubMed ID: 32916911
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loss of Tbx3 in murine neural crest reduces enteric glia and causes cleft palate, but does not influence heart development or bowel transit.
    López SH; Avetisyan M; Wright CM; Mesbah K; Kelly RG; Moon AM; Heuckeroth RO
    Dev Biol; 2018 Dec; 444 Suppl 1(Suppl 1):S337-S351. PubMed ID: 30292786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC; Iwata J; Suzuki A; Chai Y; Hacia JG
    J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nager syndrome and Pierre Robin sequence.
    Rosa RF; Guimarães VB; Beltrão LA; Trombetta JS; Lliguin KL; de Mattos VF; Zen PR
    Pediatr Int; 2015 Apr; 57(2):e69-72. PubMed ID: 25808856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.