BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33155532)

  • 1. Structural mechanism of the Tanford transition of bovine β-lactoglobulin through microsecond molecular dynamics simulations.
    Bello M
    J Biomol Struct Dyn; 2022 Apr; 40(7):3011-3023. PubMed ID: 33155532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and mechanism of the Tanford transition of bovine beta-lactoglobulin studied using heteronuclear NMR spectroscopy.
    Sakurai K; Goto Y
    J Mol Biol; 2006 Feb; 356(2):483-96. PubMed ID: 16368109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 200 nanoseconds all-atom simulation of the pH-dependent EF loop transition in bovine β-lactoglobulin. The role of the orientation of the E89 side chain.
    Fenner K; Redgate A; Brancaleon L
    J Biomol Struct Dyn; 2022 Jan; 40(1):549-564. PubMed ID: 32909899
    [No Abstract]   [Full Text] [Related]  

  • 4. Energetic and structural effects of the Tanford transition on ligand recognition of bovine β-lactoglobulin.
    Labra-Núñez A; Cofas-Vargas LF; Gutiérrez-Magdaleno G; Gómez-Velasco H; Rodríguez-Hernández A; Rodríguez-Romero A; García-Hernández E
    Arch Biochem Biophys; 2021 Mar; 699():108750. PubMed ID: 33421379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic and conformational features linked to the monomeric and dimeric states of bovine BLG.
    Bello M; Fragoso-Vázquez MJ; Correa Basurto J
    Int J Biol Macromol; 2016 Nov; 92():625-636. PubMed ID: 27456117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorganization in apo- and holo-beta-lactoglobulin upon protonation of Glu89: molecular dynamics and pKa calculations.
    Eberini I; Baptista AM; Gianazza E; Fraternali F; Beringhelli T
    Proteins; 2004 Mar; 54(4):744-58. PubMed ID: 14997570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine beta-lactoglobulin: interaction studies with palmitic acid.
    Ragona L; Fogolari F; Zetta L; Pérez DM; Puyol P; De Kruif K; Löhr F; Rüterjans H; Molinari H
    Protein Sci; 2000 Jul; 9(7):1347-56. PubMed ID: 10933500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of two crystal forms of sheep β-lactoglobulin with EF-loop in closed conformation.
    Loch JI; Molenda M; Kopeć M; Swiątek S; Lewiński K
    Biopolymers; 2014 Aug; 101(8):886-94. PubMed ID: 25098178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MM/PBSA analysis of molecular dynamics simulations of bovine beta-lactoglobulin: free energy gradients in conformational transitions?
    Fogolari F; Moroni E; Wojciechowski M; Baginski M; Ragona L; Molinari H
    Proteins; 2005 Apr; 59(1):91-103. PubMed ID: 15690343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approach to Study pH-Dependent Protein Association Using Constant-pH Molecular Dynamics: Application to the Dimerization of β-Lactoglobulin.
    da Rocha L; Baptista AM; Campos SRR
    J Chem Theory Comput; 2022 Mar; 18(3):1982-2001. PubMed ID: 35171602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of the Tanford transition of bovine beta-lactoglobulin.
    Qin BY; Bewley MC; Creamer LK; Baker HM; Baker EN; Jameson GB
    Biochemistry; 1998 Oct; 37(40):14014-23. PubMed ID: 9760236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid binding properties of the lipocalin member beta-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods.
    Zsila F; Bikádi Z; Simonyi M
    Biochem Pharmacol; 2002 Dec; 64(11):1651-60. PubMed ID: 12429354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EF loop conformational change triggers ligand binding in beta-lactoglobulins.
    Ragona L; Fogolari F; Catalano M; Ugolini R; Zetta L; Molinari H
    J Biol Chem; 2003 Oct; 278(40):38840-6. PubMed ID: 12857741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational variability of goat β-lactoglobulin: crystallographic and thermodynamic studies.
    Loch JI; Bonarek P; Polit A; Świątek S; Czub M; Ludwikowska M; Lewiński K
    Int J Biol Macromol; 2015 Jan; 72():1283-91. PubMed ID: 25450833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the interaction of metal-protoporphyrins photosensitizers with β- lactoglobulin.
    Castillo O; Mancillas J; Hughes W; Brancaleon L
    Biophys Chem; 2023 Jan; 292():106918. PubMed ID: 36399946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Polar Head Nature and Tail Length of Single-Chain Lipids on the Conformational Stability of β-Lactoglobulin.
    Rizzuti B; Bartucci R; Guzzi R
    J Phys Chem B; 2020 Feb; 124(6):944-952. PubMed ID: 31968169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition.
    Botelho MM; Valente-Mesquita VL; Oliveira KM; Polikarpov I; Ferreira ST
    Eur J Biochem; 2000 Apr; 267(8):2235-41. PubMed ID: 10759846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and energetic requirements for a second binding site at the dimeric β-lactoglobulin interface.
    Bello M
    J Biomol Struct Dyn; 2016 Sep; 34(9):1884-902. PubMed ID: 26375627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An asymmetric dimer of beta-lactoglobulin in a low humidity crystal form--structural changes that accompany partial dehydration and protein action.
    Vijayalakshmi L; Krishna R; Sankaranarayanan R; Vijayan M
    Proteins; 2008 Apr; 71(1):241-9. PubMed ID: 17932936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Taulier N; Chalikian TV
    J Mol Biol; 2001 Dec; 314(4):873-89. PubMed ID: 11734004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.