BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33155587)

  • 1. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy.
    Li X; Li Z; Yu H
    Chem Commun (Camb); 2020 Dec; 56(93):14653-14656. PubMed ID: 33155587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of PD1/PD-L1 X-Aptamers.
    Wang H; Lam CH; Li X; West DL; Yang X
    Biochimie; 2018 Feb; 145():125-130. PubMed ID: 28912094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect.
    Gao T; Mao Z; Li W; Pei R
    J Mater Chem B; 2021 Jan; 9(3):746-756. PubMed ID: 33319876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future of PD-1/PD-L1 axis modulation for the treatment of triple-negative breast cancer.
    Nakhjavani M; Shigdar S
    Pharmacol Res; 2022 Jan; 175():106019. PubMed ID: 34861397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Blocking of PD-1/PD-L1 Interaction for Cancer Immunotherapy.
    Li C; Zhang N; Zhou J; Ding C; Jin Y; Cui X; Pu K; Zhu Y
    Cancer Immunol Res; 2018 Feb; 6(2):178-188. PubMed ID: 29217732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy.
    Lin X; Zeng T; Lin J; Zhang Q; Cheng H; Fang S; Lin S; Chen Y; Xu Y; Lin J
    Cancer Biol Ther; 2020; 21(2):130-138. PubMed ID: 31690181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiota-Regulated Outcomes of Human Cancer Immunotherapy via the PD-1/PD-L1 Axis.
    Patel J; Crawford JM
    Biochemistry; 2018 Feb; 57(6):901-903. PubMed ID: 29350031
    [No Abstract]   [Full Text] [Related]  

  • 8. PD-1/PD-L1 and immunotherapy for pancreatic cancer.
    Feng M; Xiong G; Cao Z; Yang G; Zheng S; Song X; You L; Zheng L; Zhang T; Zhao Y
    Cancer Lett; 2017 Oct; 407():57-65. PubMed ID: 28826722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro selection of an XNA aptamer capable of small-molecule recognition.
    Rangel AE; Chen Z; Ayele TM; Heemstra JM
    Nucleic Acids Res; 2018 Sep; 46(16):8057-8068. PubMed ID: 30085205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing PD-1 and PD-L1: the potential of PolyPurine Reverse Hoogsteen hairpins for the elimination of tumor cells.
    Ciudad CJ; Medina Enriquez MM; Félix AJ; Bener G; Noé V
    Immunotherapy; 2019 Apr; 11(5):369-372. PubMed ID: 30786843
    [No Abstract]   [Full Text] [Related]  

  • 11. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design.
    Zou S; Liu J; Sun Z; Feng X; Wang Z; Jin Y; Yang Z
    Cancer Chemother Pharmacol; 2020 Jan; 85(1):185-193. PubMed ID: 31745591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
    Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C
    Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues.
    Hamanishi J; Mandai M; Matsumura N; Abiko K; Baba T; Konishi I
    Int J Clin Oncol; 2016 Jun; 21(3):462-73. PubMed ID: 26899259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade.
    Hirsch L; Zitvogel L; Eggermont A; Marabelle A
    Br J Cancer; 2019 Jan; 120(1):3-5. PubMed ID: 30413824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radiation or Chemotherapy.
    Tu X; Qin B; Zhang Y; Zhang C; Kahila M; Nowsheen S; Yin P; Yuan J; Pei H; Li H; Yu J; Song Z; Zhou Q; Zhao F; Liu J; Zhang C; Dong H; Mutter RW; Lou Z
    Mol Cell; 2019 Jun; 74(6):1215-1226.e4. PubMed ID: 31053471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamers Targeting the PD-1/PD-L1 Axis: A Perspective.
    Bertrand P
    J Med Chem; 2023 Aug; 66(16):10878-10888. PubMed ID: 37561598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking PD-1/PD-L1 by an ADCC enhanced anti-B7-H3/PD-1 fusion protein engages immune activation and cytotoxicity.
    Xu Y; Xiao Y; Luo C; Liu Q; Wei A; Yang Y; Zhao L; Wang Y
    Int Immunopharmacol; 2020 Jul; 84():106584. PubMed ID: 32422527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a novel, potent and selective small-molecule inhibitor of PD-1/PD-L1 interaction with robust in vivo anti-tumour efficacy.
    Liu C; Zhou F; Yan Z; Shen L; Zhang X; He F; Wang H; Lu X; Yu K; Zhao Y; Zhu D
    Br J Pharmacol; 2021 Jul; 178(13):2651-2670. PubMed ID: 33768523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy.
    Lin S; Huang G; Cheng L; Li Z; Xiao Y; Deng Q; Jiang Y; Li B; Lin S; Wang S; Wu Q; Yao H; Cao S; Li Y; Liu P; Wei W; Pei D; Yao Y; Wen Z; Zhang X; Wu Y; Zhang Z; Cui S; Sun X; Qian X; Li P
    MAbs; 2018; 10(8):1301-1311. PubMed ID: 30204048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.