These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33155739)

  • 41. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.
    Korayem MH; Saraie MB; Saraee MB
    Ultramicroscopy; 2017 Apr; 175():9-24. PubMed ID: 28110179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-frequency analysis of the tip motion in liquids using the wavelet transform in dynamic atomic force microscopy.
    Wang Z; Qian J; Li Y; Zhang Y; Shan G; Dou Z; Song Z; Lin R
    Nanotechnology; 2018 Sep; 29(38):385702. PubMed ID: 29957597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Error in dynamic spring constant calibration of atomic force microscope probes due to nonuniform cantilevers.
    Frentrup H; Allen MS
    Nanotechnology; 2011 Jul; 22(29):295703. PubMed ID: 21673383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever.
    Solares SD; Hölscher H
    Nanotechnology; 2010 Feb; 21(7):75702. PubMed ID: 20081283
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor.
    Hussain D; Wen Y; Zhang H; Song J; Xie H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe.
    Chang WJ; Fang TH; Lee HL; Yang YC
    Ultramicroscopy; 2005 Jan; 102(2):85-92. PubMed ID: 15590131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope.
    Barkley SS; Deng Z; Gates RS; Reitsma MG; Cannara RJ
    Rev Sci Instrum; 2012 Feb; 83(2):023707. PubMed ID: 22380099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitivity optimization of the scanning microdeformation microscope and application to mechanical characterization of soft materials.
    Le Rouzic J; Vairac P; Cretin B; Delobelle P
    Rev Sci Instrum; 2008 Mar; 79(3):033707. PubMed ID: 18377015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution measurement of atomic force microscope cantilever resonance frequency.
    Xu B; Saygin V; Brown KA; Andersson SB
    Rev Sci Instrum; 2020 Dec; 91(12):123705. PubMed ID: 33379947
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Squeeze Film Air Damping in Tapping Mode Atomic Force Microscopy.
    Zhao Y; Huang Q; Zhang L; Zhang Y; Cheng R
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400416
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude.
    de Laat ML; Pérez Garza HH; Ghatkesar MK
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fano-like resonance in an optically driven atomic force microscope cantilever.
    Kadri S; Fujiwara H; Sasaki K
    Opt Express; 2011 Jan; 19(3):2317-24. PubMed ID: 21369050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterisation (invited).
    Rabe U; Kopycinska M; Hirsekorn S; Arnold W
    Ultrasonics; 2002 May; 40(1-8):49-54. PubMed ID: 12159988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A more comprehensive modeling of atomic force microscope cantilever.
    Mahdavi MH; Farshidianfar A; Tahani M; Mahdavi S; Dalir H
    Ultramicroscopy; 2008 Dec; 109(1):54-60. PubMed ID: 18848749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor.
    Körner J
    Beilstein J Nanotechnol; 2018; 9():2546-2560. PubMed ID: 30345217
    [No Abstract]   [Full Text] [Related]  

  • 59. A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid.
    Zhang Y; Li Y; Song Z; Lin R; Chen Y; Qian J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.
    Gramazio F; Lorenzoni M; Pérez-Murano F; Rull Trinidad E; Staufer U; Fraxedas J
    Beilstein J Nanotechnol; 2017; 8():883-891. PubMed ID: 28503399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.