These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33155981)

  • 1. Sources of widefield fluorescence from the brain.
    Waters J
    Elife; 2020 Nov; 9():. PubMed ID: 33155981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing fluorescence collection efficiency in multiphoton microscopy.
    Zinter JP; Levene MJ
    Opt Express; 2011 Aug; 19(16):15348-62. PubMed ID: 21934897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon microscopy in brain tissue: parameters influencing the imaging depth.
    Oheim M; Beaurepaire E; Chaigneau E; Mertz J; Charpak S
    J Neurosci Methods; 2001 Oct; 111(1):29-37. PubMed ID: 11574117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widefield fluorescence localization microscopy for transcranial imaging of cortical perfusion with capillary resolution.
    Chen Z; Zhou Q; Robin J; Razansky D
    Opt Lett; 2020 Jul; 45(13):3470-3473. PubMed ID: 32630874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain.
    Tian P; Devor A; Sakadzić S; Dale AM; Boas DA
    J Biomed Opt; 2011; 16(1):016006. PubMed ID: 21280912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Video-rate volumetric neuronal imaging using 3D targeted illumination.
    Xiao S; Tseng HA; Gritton H; Han X; Mertz J
    Sci Rep; 2018 May; 8(1):7921. PubMed ID: 29784920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widefield fluorescence sectioning with HiLo microscopy.
    Mertz J; Lim D; Chu KK; Bozinovic N; Ford T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3229-30. PubMed ID: 19964062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.
    Kim G; Nagarajan N; Pastuzyn E; Jenks K; Capecchi M; Shepherd J; Menon R
    Sci Rep; 2017 Mar; 7():44791. PubMed ID: 28317915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy.
    Pfefer TJ; Agrawal A; Drezek RA
    J Biomed Opt; 2005; 10(4):44016. PubMed ID: 16178649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy.
    Denk W; Delaney KR; Gelperin A; Kleinfeld D; Strowbridge BW; Tank DW; Yuste R
    J Neurosci Methods; 1994 Oct; 54(2):151-62. PubMed ID: 7869748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors.
    Chen Y; Cao R; Liu W; Zhu D; Zhang Z; Kuang C; Liu X
    J Biomed Opt; 2018 Apr; 23(4):1-9. PubMed ID: 29693956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma.
    Fu HL; Mueller JL; Javid MP; Mito JK; Kirsch DG; Ramanujam N; Brown JQ
    PLoS One; 2013; 8(7):e68868. PubMed ID: 23894357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast confocal fluorescence imaging in freely behaving mice.
    Dussaux C; Szabo V; Chastagnier Y; Fodor J; Léger JF; Bourdieu L; Perroy J; Ventalon C
    Sci Rep; 2018 Nov; 8(1):16262. PubMed ID: 30389966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantization of widefield fluorescence images using structured illumination and image analysis software.
    Barlow AL; Guerin CJ
    Microsc Res Tech; 2007 Jan; 70(1):76-84. PubMed ID: 17131356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved signal to noise ratio.
    Greger K; Neetz MJ; Reynaud EG; Stelzer EH
    Opt Express; 2011 Oct; 19(21):20743-50. PubMed ID: 21997084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widefield fluorescence microscopy with extended resolution.
    Stemmer A; Beck M; Fiolka R
    Histochem Cell Biol; 2008 Nov; 130(5):807-17. PubMed ID: 18810482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields.
    Mau A; Friedl K; Leterrier C; Bourg N; Lévêque-Fort S
    Nat Commun; 2021 May; 12(1):3077. PubMed ID: 34031402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.