These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33156384)

  • 1. Expression pattern of cochlear microRNAs in the mammalian auditory hindbrain.
    Krohs C; Bordeynik-Cohen M; Messika-Gold N; Elkon R; Avraham KB; Nothwang HG
    Cell Tissue Res; 2021 Feb; 383(2):655-666. PubMed ID: 33156384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Gene Regulatory Network Components in the Auditory Hindbrain of Mice and Chicken.
    Pawlik B; Schlüter T; Hartwich H; Breuel S; Heepmann L; Nothwang HG
    Brain Behav Evol; 2016; 88(3-4):161-176. PubMed ID: 27866201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of microRNAs in the developing avian auditory hindbrain.
    Saleh AJ; Nothwang HG
    J Comp Neurol; 2021 Oct; 529(15):3477-3496. PubMed ID: 34180540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.
    Ebbers L; Weber M; Nothwang HG
    BMC Neurosci; 2017 Oct; 18(1):75. PubMed ID: 29073893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Egr2::cre mediated conditional ablation of dicer disrupts histogenesis of mammalian central auditory nuclei.
    Rosengauer E; Hartwich H; Hartmann AM; Rudnicki A; Satheesh SV; Avraham KB; Nothwang HG
    PLoS One; 2012; 7(11):e49503. PubMed ID: 23152916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of unilateral cochlear ablation on the expression of vesicular glutamate transporter 1 in the lower auditory pathway of neonatal rats.
    Hasegawa H; Hatano M; Sugimoto H; Ito M; Kawasaki H; Yoshizaki T
    Auris Nasus Larynx; 2017 Dec; 44(6):690-699. PubMed ID: 28238468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative expression analysis of the Atoh7 gene regulatory network in the mouse and chicken auditory hindbrain.
    Saleh AJ; Ahmed Y; Peters LO; Nothwang HG
    Cell Tissue Res; 2023 Jun; 392(3):643-658. PubMed ID: 36961563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses.
    Rubio ME; Nagy JI
    Neuroscience; 2015 Sep; 303():604-29. PubMed ID: 26188286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved and divergent development of brainstem vestibular and auditory nuclei.
    Lipovsek M; Wingate RJ
    Elife; 2018 Dec; 7():. PubMed ID: 30566077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared and organ-specific gene-expression programs during the development of the cochlea and the superior olivary complex.
    Bordeynik-Cohen M; Sperber M; Ebbers L; Messika-Gold N; Krohs C; Koffler-Brill T; Noy Y; Elkon R; Nothwang HG; Avraham KB
    RNA Biol; 2023 Jan; 20(1):629-640. PubMed ID: 37602850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gene regulatory networks underlying formation of the auditory hindbrain.
    Willaredt MA; Schlüter T; Nothwang HG
    Cell Mol Life Sci; 2015 Feb; 72(3):519-535. PubMed ID: 25332098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perineuronal nets in the auditory system.
    Sonntag M; Blosa M; Schmidt S; Rübsamen R; Morawski M
    Hear Res; 2015 Nov; 329():21-32. PubMed ID: 25580005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems.
    Michalski N; Petit C
    Annu Rev Neurosci; 2019 Jul; 42():67-86. PubMed ID: 30699050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pattern of Fos expression in the rat auditory brainstem changes with the temporal structure of binaural electrical intracochlear stimulation.
    Jakob TF; Döring U; Illing RB
    Exp Neurol; 2015 Apr; 266():55-67. PubMed ID: 25708983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-96 is required for normal development of the auditory hindbrain.
    Schlüter T; Berger C; Rosengauer E; Fieth P; Krohs C; Ushakov K; Steel KP; Avraham KB; Hartmann AK; Felmy F; Nothwang HG
    Hum Mol Genet; 2018 Mar; 27(5):860-874. PubMed ID: 29325119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroglobin Expression in the Mammalian Auditory System.
    Reuss S; Banica O; Elgurt M; Mitz S; Disque-Kaiser U; Riemann R; Hill M; Jaquish DV; Koehrn FJ; Burmester T; Hankeln T; Woolf NK
    Mol Neurobiol; 2016 Apr; 53(3):1461-1477. PubMed ID: 25636685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inner ear lesion alters acoustically induced c-Fos expression in the rat auditory rhomboencephalic brainstem.
    Riera-Sala C; Molina-Mira A; Marco-Algarra J; Martínez-Soriano F; Olucha FE
    Hear Res; 2001 Dec; 162(1-2):53-66. PubMed ID: 11707352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of rat glycine receptor alpha1 and alpha2 subunit transcripts in the developing auditory brainstem.
    Piechotta K; Weth F; Harvey RJ; Friauf E
    J Comp Neurol; 2001 Sep; 438(3):336-52. PubMed ID: 11550176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Talking back: Development of the olivocochlear efferent system.
    Frank MM; Goodrich LV
    Wiley Interdiscip Rev Dev Biol; 2018 Nov; 7(6):e324. PubMed ID: 29944783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.