BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 33156501)

  • 1. Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar.
    Trabelsi ABH; Zaafouri K; Friaa A; Abidi S; Naoui S; Jamaaoui F
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9777-9791. PubMed ID: 33156501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorization of rubberwood sawdust and sewage sludge by pyrolysis and co-pyrolysis using agitated bed reactor for producing biofuel or value-added products.
    Ali L; Palamanit A; Techato K; Baloch KA; Jutidamrongphan W
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1338-1363. PubMed ID: 34355326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production.
    Ghodke PK; Sharma AK; Pandey JK; Chen WH; Patel A; Ashokkumar V
    J Environ Manage; 2021 Nov; 298():113450. PubMed ID: 34388542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism.
    Qiu Z; Zhai Y; Li S; Liu X; Liu X; Wang B; Liu Y; Li C; Hu Y
    Waste Manag; 2020 Aug; 114():225-233. PubMed ID: 32682087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge.
    Chen H; Zhai Y; Xu B; Xiang B; Zhu L; Qiu L; Liu X; Li C; Zeng G
    Environ Technol; 2015; 36(1-4):470-8. PubMed ID: 25518986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach.
    O'Boyle M; Mohamed BA; Li LY
    Chemosphere; 2024 Feb; 350():141074. PubMed ID: 38160959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations.
    Ben Hassen Trabelsi A; Ghrib A; Zaafouri K; Friaa A; Ouerghi A; Naoui S; Belayouni H
    Biomed Res Int; 2017; 2017():7831470. PubMed ID: 28856162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical water pyrolysis of sewage sludge.
    Ma W; Du G; Li J; Fang Y; Hou L; Chen G; Ma D
    Waste Manag; 2017 Jan; 59():371-378. PubMed ID: 27836517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms.
    Cui B; Chen Z; Guo D; Liu Y
    Bioresour Technol; 2022 Apr; 349():126328. PubMed ID: 34780909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst.
    Dong Q; Li H; Niu M; Luo C; Zhang J; Qi B; Li X; Zhong W
    Bioresour Technol; 2018 Oct; 266():284-290. PubMed ID: 29982049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation on municipal sewage sludge utilization processes for sustainable management in Tibet.
    Chen G; Zhang R; Guo X; Wu W; Guo Q; Zhang Y; Yan B
    Sci Total Environ; 2021 Apr; 765():142676. PubMed ID: 33077228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.
    Lei H; Ren S; Wang L; Bu Q; Julson J; Holladay J; Ruan R
    Bioresour Technol; 2011 May; 102(10):6208-13. PubMed ID: 21377870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive utilization of the pyrolysis products from sewage sludge.
    Xu WY; Wu D
    Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different pyrolysis kinetics and product distribution of municipal and livestock manure sewage sludge.
    Lee S; Kim YM; Siddiqui MZ; Park YK
    Environ Pollut; 2021 Sep; 285():117197. PubMed ID: 33930823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.
    Irfan M; Chen Q; Yue Y; Pang R; Lin Q; Zhao X; Chen H
    Bioresour Technol; 2016 Jul; 211():457-63. PubMed ID: 27035478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate.
    Tayibi S; Monlau F; Marias F; Thevenin N; Jimenez R; Oukarroum A; Alboulkas A; Zeroual Y; Barakat A
    Sci Total Environ; 2021 Nov; 793():148461. PubMed ID: 34182451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of primary sewage sludge and coal lignite by microwave-assisted pyrolysis for the production of bio-oil.
    Xaba SA; Igberase E; Osayi J; Seodigeng T; Osifo PO
    Environ Technol; 2022 Feb; 43(5):658-672. PubMed ID: 32677866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology.
    Neha S; Remya N
    J Environ Manage; 2021 Nov; 297():113345. PubMed ID: 34329909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.
    Wang K; Brown RC; Homsy S; Martinez L; Sidhu SS
    Bioresour Technol; 2013 Jan; 127():494-9. PubMed ID: 23069615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.