BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33156531)

  • 21. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An unnatural base pair for efficient incorporation of nucleotide analogs into RNAs.
    Hirao I; Mitsui T; Kimoto M; Harada Y; Yokoyama S
    Nucleic Acids Res Suppl; 2003; (3):215-6. PubMed ID: 14510457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How do hydrophobic nucleobases differ from natural DNA nucleobases? Comparison of structural features and duplex properties from QM calculations and MD simulations.
    Negi I; Kathuria P; Sharma P; Wetmore SD
    Phys Chem Chem Phys; 2017 Jun; 19(25):16365-16374. PubMed ID: 28657627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly specific unnatural base pair systems as a third base pair for PCR amplification.
    Yamashige R; Kimoto M; Takezawa Y; Sato A; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2012 Mar; 40(6):2793-806. PubMed ID: 22121213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase.
    Oh J; Kimoto M; Xu H; Chong J; Hirao I; Wang D
    Nat Commun; 2023 Jan; 14(1):195. PubMed ID: 36635281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription of an expanded genetic alphabet.
    Seo YJ; Matsuda S; Romesberg FE
    J Am Chem Soc; 2009 Apr; 131(14):5046-7. PubMed ID: 19351201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair.
    Ledbetter MP; Craig JM; Karadeema RJ; Noakes MT; Kim HC; Abell SJ; Huang JR; Anderson BA; Krishnamurthy R; Gundlach JH; Romesberg FE
    J Am Chem Soc; 2020 Feb; 142(5):2110-2114. PubMed ID: 31985216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of 2'-O-methyl nucleotide on ligation capability of T4 DNA ligase.
    Zhao B; Tong Z; Zhao G; Mu R; Shang H; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2014 Sep; 46(9):727-37. PubMed ID: 25022752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules.
    Kimoto M; Kawai R; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2009 Feb; 37(2):e14. PubMed ID: 19073696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells.
    Morris SE; Feldman AW; Romesberg FE
    ACS Synth Biol; 2017 Oct; 6(10):1834-1840. PubMed ID: 28654252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing Genetic Alphabet Expansion: Synthesis of 7-(2-Thienyl)-Imidazo[4,5-b]pyridine (Ds) and 4-(4-Pentyne-1,2-diol)-1-Propynyl-2-Nitropyrrole (Diol-Px) for Use in Replicable Unnatural Base Pairs for PCR Applications.
    Tan HP; Kimoto M; Hirao I
    Curr Protoc; 2024 Apr; 4(4):e1009. PubMed ID: 38572677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unnatural nucleosides with unusual base pairing properties.
    Bergstrom DE
    Curr Protoc Nucleic Acid Chem; 2001 Aug; Chapter 1():Unit 1.4. PubMed ID: 18428819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Canonical nucleosides can be utilized by T4 DNA ligase as universal template bases at ligation junctions.
    Alexander RC; Johnson AK; Thorpe JA; Gevedon T; Testa SM
    Nucleic Acids Res; 2003 Jun; 31(12):3208-16. PubMed ID: 12799448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Making AppDNA using T4 DNA ligase.
    Chiuman W; Li Y
    Bioorg Chem; 2002 Oct; 30(5):332-49. PubMed ID: 12485593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Template-directed ligation of tethered mononucleotides by t4 DNA ligase for kinase ribozyme selection.
    Nickens DG; Bardiya N; Patterson JT; Burke DH
    PLoS One; 2010 Aug; 5(8):e12368. PubMed ID: 20811490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expansion of the genetic code via expansion of the genetic alphabet.
    Dien VT; Morris SE; Karadeema RJ; Romesberg FE
    Curr Opin Chem Biol; 2018 Oct; 46():196-202. PubMed ID: 30205312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of an unnatural base pair toward natural-like replication.
    Seo YJ; Hwang GT; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Mar; 131(9):3246-52. PubMed ID: 19256568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet.
    Ledbetter MP; Malyshev DA; Romesberg FE
    Methods Mol Biol; 2019; 1973():193-212. PubMed ID: 31016704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.