BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33156533)

  • 1. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton.
    Malerba ME; Marshall DJ; Palacios MM; Raven JA; Beardall J
    New Phytol; 2021 Mar; 229(5):2647-2659. PubMed ID: 33156533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri.
    Smith-Harding TJ; Beardall J; Mitchell JG
    J Phycol; 2017 Dec; 53(6):1159-1170. PubMed ID: 28771812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.
    García-Sánchez MJ; Delgado-Huertas A; Fernández JA; Flores-Moya A
    Photosynth Res; 2016 Mar; 127(3):295-305. PubMed ID: 26275764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide-concentrating mechanism and the development of extracellular carbonic anhydrase in the marine picoeukaryote Micromonas pusilla.
    Iglesias-Rodríguez MD; Nimer NA; Merrett MJ
    New Phytol; 1998 Dec; 140(4):685-690. PubMed ID: 33862948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon.
    Keys M; Hopkinson B; Highfield A; Chrachri A; Brownlee C; Wheeler GL
    J Phycol; 2024 Feb; 60(1):29-45. PubMed ID: 38127095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession.
    Lines T; Beardall J
    J Phycol; 2018 Oct; 54(5):599-607. PubMed ID: 30055070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The many types of carbonic anhydrases in photosynthetic organisms.
    DiMario RJ; Machingura MC; Waldrop GL; Moroney JV
    Plant Sci; 2018 Mar; 268():11-17. PubMed ID: 29362079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in
    Gee CW; Niyogi KK
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4537-4542. PubMed ID: 28396394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi.
    Stojkovic S; Beardall J; Matear R
    J Phycol; 2013 Aug; 49(4):670-9. PubMed ID: 27007199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm.
    Huang W; Han S; Jiang H; Gu S; Li W; Gontero B; Maberly SC
    J Exp Bot; 2020 Oct; 71(19):6004-6014. PubMed ID: 32721017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acquisition of inorganic carbon by four red macroalgae.
    Johnston AM; Maberly SC; Raven JA
    Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited.
    Ruan Z; Raven JA; Giordano M
    J Exp Bot; 2017 Jun; 68(14):3829-3839. PubMed ID: 28369501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of HCO
    Fan W; Liu Y; Xu X; Dong X; Wang H
    Plant Physiol Biochem; 2024 Apr; 209():108530. PubMed ID: 38520966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species.
    Eberlein T; Van de Waal DB; Rost B
    Physiol Plant; 2014 Aug; 151(4):468-79. PubMed ID: 24320746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new widespread subclass of carbonic anhydrase in marine phytoplankton.
    Jensen EL; Clement R; Kosta A; Maberly SC; Gontero B
    ISME J; 2019 Aug; 13(8):2094-2106. PubMed ID: 31024153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of UV radiation and inorganic carbon supply in the inhibition of photosynthesis: spectral and temporal responses of two marine picoplankters.
    Sobrino C; Neale PJ; Lubián LM
    Photochem Photobiol; 2005; 81(2):384-93. PubMed ID: 15538899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.