These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33156654)

  • 1. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation.
    Omar AK; Klymko K; GrandPre T; Geissler PL
    Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified analysis of topological defects in 2D systems of active and passive disks.
    Digregorio P; Levis D; Cugliandolo LF; Gonnella G; Pagonabarraga I
    Soft Matter; 2022 Jan; 18(3):566-591. PubMed ID: 34928290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-induced phase separation and self-assembly in mixtures of active and passive particles.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Phys Rev Lett; 2015 Jan; 114(1):018301. PubMed ID: 25615509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organized Critical Coexistence Phase in Repulsive Active Particles.
    Shi XQ; Fausti G; Chaté H; Nardini C; Solon A
    Phys Rev Lett; 2020 Oct; 125(16):168001. PubMed ID: 33124871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behaviour of active Brownian particles: the role of dimensionality.
    Stenhammar J; Marenduzzo D; Allen RJ; Cates ME
    Soft Matter; 2014 Mar; 10(10):1489-99. PubMed ID: 24651885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation in binary mixtures of active and passive particles.
    Dolai P; Simha A; Mishra S
    Soft Matter; 2018 Jul; 14(29):6137-6145. PubMed ID: 29999083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curvature-dependent tension and tangential flows at the interface of motility-induced phases.
    Patch A; Sussman DM; Yllanes D; Marchetti MC
    Soft Matter; 2018 Sep; 14(36):7435-7445. PubMed ID: 30152493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of motility-induced phase separation and swim pressure.
    Patch A; Yllanes D; Marchetti MC
    Phys Rev E; 2017 Jan; 95(1-1):012601. PubMed ID: 28208385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical Nucleation Theory Description of Active Colloid Assembly.
    Redner GS; Wagner CG; Baskaran A; Hagan MF
    Phys Rev Lett; 2016 Sep; 117(14):148002. PubMed ID: 27740811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced Phase Separation.
    Digregorio P; Levis D; Suma A; Cugliandolo LF; Gonnella G; Pagonabarraga I
    Phys Rev Lett; 2018 Aug; 121(9):098003. PubMed ID: 30230874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of a phase-separating active colloidal fluid.
    Redner GS; Hagan MF; Baskaran A
    Phys Rev Lett; 2013 Feb; 110(5):055701. PubMed ID: 23414035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering and phase separation in mixtures of dipolar and active particles.
    Maloney RC; Liao GJ; Klapp SHL; Hall CK
    Soft Matter; 2020 Apr; 16(15):3779-3791. PubMed ID: 32239046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic effects on the liquid-hexatic transition of active colloids.
    Negro G; Caporusso CB; Digregorio P; Gonnella G; Lamura A; Suma A
    Eur Phys J E Soft Matter; 2022 Sep; 45(9):75. PubMed ID: 36098879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting Transition of Active Brownian Particles on a Thin Membrane.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Dec; 127(23):238002. PubMed ID: 34936774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Jan; 126(3):038002. PubMed ID: 33543975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.