These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 33156779)
1. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies. Lorenzo MF; Bhonsle SP; Arena CB; Davalos RV IEEE Trans Biomed Eng; 2021 May; 68(5):1536-1546. PubMed ID: 33156779 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Bhonsle SP; Arena CB; Sweeney DC; Davalos RV Biomed Eng Online; 2015; 14 Suppl 3(Suppl 3):S3. PubMed ID: 26355870 [TBL] [Abstract][Full Text] [Related]
3. Ablation outcome of irreversible electroporation on potato monitored by impedance spectrum under multi-electrode system. Zhao Y; Liu H; Bhonsle SP; Wang Y; Davalos RV; Yao C Biomed Eng Online; 2018 Sep; 17(1):126. PubMed ID: 30236121 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Impedance Monitoring During Electroporation Processes in Vegetal Tissue Using a High-Performance Generator. López-Alonso B; Sarnago H; Lucía O; Briz P; Burdío JM Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498417 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Nonlinearity and Dispersion in Tissue Impedance During High-Frequency Electroporation. Bhonsle S; Lorenzo MF; Safaai-Jazi A; Davalos RV IEEE Trans Biomed Eng; 2018 Oct; 65(10):2190-2201. PubMed ID: 29989955 [TBL] [Abstract][Full Text] [Related]
6. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. Garcia PA; Davalos RV; Miklavcic D PLoS One; 2014; 9(8):e103083. PubMed ID: 25115970 [TBL] [Abstract][Full Text] [Related]
8. TBISTAT: An open-source, wireless portable, electrochemical impedance spectroscopy capable potentiostat for the point-of-care detection of S100B in plasma samples. Burgos-Flórez F; Rodríguez A; Cervera E; Zucolotto V; Sanjuán M; Villalba PJ PLoS One; 2022; 17(2):e0263738. PubMed ID: 35130295 [TBL] [Abstract][Full Text] [Related]
9. Lethal Electric Field Thresholds for Cerebral Cells With Irreversible Electroporation and H-FIRE Protocols: An In Vitro Three-Dimensional Cell Model Study. Shu T; Ding L; Fang Z; Yu S; Chen L; Moser MAJ; Zhang W; Qin Z; Zhang B J Biomech Eng; 2022 Oct; 144(10):. PubMed ID: 35445240 [TBL] [Abstract][Full Text] [Related]
10. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure. Noh S; Kim H Lab Chip; 2020 May; 20(10):1751-1761. PubMed ID: 32347229 [TBL] [Abstract][Full Text] [Related]
17. Impedance spectroscopy of changes in skin-electrode impedance induced by motion. Cömert A; Hyttinen J Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355 [TBL] [Abstract][Full Text] [Related]
18. Electroporation Microchip With Integrated Conducting Polymer Electrode Array for Highly Sensitive Impedance Measurement. Dijk G; Poulkouras R; OConnor RP IEEE Trans Biomed Eng; 2022 Jul; 69(7):2363-2369. PubMed ID: 35041593 [TBL] [Abstract][Full Text] [Related]
19. In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy. García-Sánchez T; Bragós R; Mir LM Biosens Bioelectron; 2018 Oct; 117():207-216. PubMed ID: 29906768 [TBL] [Abstract][Full Text] [Related]
20. Scanning electrochemical microscope as a tool for the electroporation of living yeast cells. Poderyte M; Valiūnienė A; Ramanavicius A Biosens Bioelectron; 2022 Jun; 205():114096. PubMed ID: 35219018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]