These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33156793)

  • 1. 1225-Channel Neuromorphic Retinal-Prosthesis SoC With Localized Temperature-Regulation.
    Park JH; Tan JSY; Wu H; Dong Y; Yoo J
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1230-1240. PubMed ID: 33156793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse.
    Oh S; Ahn JH; Lee S; Ko H; Seo JM; Goo YS; Cho DI
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):70-9. PubMed ID: 25020014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Image processing system of visual prostheses based on digital signal processor DM642].
    Xie C; Lu Y; Gu Y; Wang J; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2011 Sep; 35(5):330-4. PubMed ID: 22242377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS-based system and image processing strategy for epiretinal prosthesis.
    Xia P; Hu J; Qi J; Gu C; Peng Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1257-63. PubMed ID: 26405885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient Light Rejection Integrated Circuit for Autonomous Adaptation on a Sub-Retinal Prosthetic System.
    Kang H; Choi H; Kim J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An image-processing strategy to extract important information suitable for a low-size stimulus pattern in a retinal prosthesis.
    Chen Y; Fu J; Chu D; Li R; Xie Y
    Biomed Tech (Berl); 2017 Nov; 62(6):591-598. PubMed ID: 28258971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 4.49nW/Pixel Light-to-Stimulus Duration Converter-Based Retinal Prosthesis Chip.
    Choi DH; Roh H; Im M; Jee DW
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1140-1148. PubMed ID: 34784285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Power ASIC Signal Processor for a Vestibular Prosthesis.
    Töreyin H; Bhatti PT
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):768-78. PubMed ID: 26800546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel multiplexing--a solution of large scale stimulation needed by the retinal prostheses to maintain the persistence of vision.
    Talukder MI; Siy P; Auner GW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2816-9. PubMed ID: 17946139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised and real-time spike sorting chip for neural signal processing in hippocampal prosthesis.
    Xu H; Han Y; Han X; Xu J; Lin S; Cheung RCC
    J Neurosci Methods; 2019 Jan; 311():111-121. PubMed ID: 30339881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation.
    Delgado-Restituto M; Romaine JB; Rodriguez-Vazquez A
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):957-970. PubMed ID: 31369385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.
    Kim H; Kim S; Van Helleputte N; Artes A; Konijnenburg M; Huisken J; Van Hoof C; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2014 Apr; 8(2):257-67. PubMed ID: 24875285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CMOS image sensor with programmable pixel-level analog processing.
    Massari N; Gottardi M; Gonzo L; Stoppa D; Simoni A
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1673-84. PubMed ID: 16342506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low power biomedical signal processor ASIC based on hardware software codesign.
    Nie ZD; Wang L; Chen WG; Zhang T; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2559-62. PubMed ID: 19965211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system verification platform for high-density epiretinal prostheses.
    Chen K; Lo YK; Yang Z; Weiland JD; Humayun MS; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):326-37. PubMed ID: 23853332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wearable real-time image processor for a vision prosthesis.
    Tsai D; Morley JW; Suaning GJ; Lovell NH
    Comput Methods Programs Biomed; 2009 Sep; 95(3):258-69. PubMed ID: 19394713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 1.83 μJ/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine.
    Bin Altaf MA; Yoo J
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):49-60. PubMed ID: 25700471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A processing platform for optoelectronic/optogenetic retinal prosthesis.
    Al-Atabany W; McGovern B; Mehran K; Berlinguer-Palmini R; Degenaar P
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):781-91. PubMed ID: 22127992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants.
    Kang H; Abbasi WH; Kim SW; Kim J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.