These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33156825)

  • 1. Global gene network exploration based on explainable artificial intelligence approach.
    Park H; Maruhashi K; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2020; 15(11):e0241508. PubMed ID: 33156825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Molecular Puzzle: Exploring Gene Networks across Diverse EMT Status of Cell Lines.
    Park H
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks.
    Park H; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2022; 17(5):e0261630. PubMed ID: 35584089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork.
    Tanaka Y; Tamada Y; Ikeguchi M; Yamashita F; Okuno Y
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32075209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.
    Park H; Shimamura T; Imoto S; Miyano S
    J Comput Biol; 2018 Feb; 25(2):130-145. PubMed ID: 29053381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PredictiveNetwork: predictive gene network estimation with application to gastric cancer drug response-predictive network analysis.
    Park H; Imoto S; Miyano S
    BMC Bioinformatics; 2022 Aug; 23(1):342. PubMed ID: 35974335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern Discovery in Multilayer Networks.
    Ren Y; Sarkar A; Veltri P; Ay A; Dobra A; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):741-752. PubMed ID: 34398763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks.
    Bernaola N; Michiels M; LarraƱaga P; Bielza C
    PLoS Comput Biol; 2023 Dec; 19(12):e1011443. PubMed ID: 38039337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable deep learning ensemble for food image analysis on edge devices.
    Tahir GA; Loo CK
    Comput Biol Med; 2021 Dec; 139():104972. PubMed ID: 34749093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene regulatory networks by integrating static and dynamic data.
    Ferrazzi F; Magni P; Sacchi L; Nuzzo A; Petrovic U; Bellazzi R
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S462-75. PubMed ID: 17825607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies.
    Markus AF; Kors JA; Rijnbeek PR
    J Biomed Inform; 2021 Jan; 113():103655. PubMed ID: 33309898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using directed information to build biologically relevant influence networks.
    Rao A; Hero AO; States DJ; Engel JD
    Comput Syst Bioinformatics Conf; 2007; 6():145-56. PubMed ID: 17951820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence.
    Westerlund AM; Hawe JS; Heinig M; Schunkert H
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification.
    Park H; Imoto S; Miyano S
    PLoS One; 2023; 18(8):e0286044. PubMed ID: 37610997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data.
    Holzinger A; Haibe-Kains B; Jurisica I
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2722-2730. PubMed ID: 31203421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining the dynamics of tumor aggressiveness: At the crossroads between biology, artificial intelligence and complex systems.
    La Porta CAM; Zapperi S
    Semin Cancer Biol; 2018 Dec; 53():42-47. PubMed ID: 30017637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data.
    Zhao Y; Shao J; Asmann YW
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):899-911. PubMed ID: 35931322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative gene co-expression network analysis of epithelial to mesenchymal transition reveals lung cancer progression stages.
    Wang D; Haley JD; Thompson P
    BMC Cancer; 2017 Dec; 17(1):830. PubMed ID: 29212455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.