These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33156987)

  • 1. Preparation of an Intelligent Oleophobic Hydrogel and Its Application in the Replacement of Locally Damaged Oil Pipelines.
    Fan T; Liu Z; Ouyang J; Li P
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52018-52027. PubMed ID: 33156987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity analysis of heat dissipation factors in a hot oil pipeline based on orthogonal experiments.
    Xu Y; Nie X; Liu XY; Cheng Q; Liu Y; Dai Z
    Sci Prog; 2020; 103(1):36850419881866. PubMed ID: 31829896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental risk of oil pipeline accidents.
    Lu H; Xi D; Qin G
    Sci Total Environ; 2023 May; 874():162386. PubMed ID: 36863588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon footprint of oil products pipeline transportation.
    Huang L; Liao Q; Yan J; Liang Y; Zhang H
    Sci Total Environ; 2021 Aug; 783():146906. PubMed ID: 33866177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Operation Safety and Reliability of a Waxy Hot Oil Pipeline with Low Throughput Using the Probabilistic Method.
    Yu P; Lei Y; Gao Y; Peng H; Deng S; Liu Y; Lv X; Zhao H
    ACS Omega; 2020 Dec; 5(51):33340-33346. PubMed ID: 33403296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Investigation of Intelligent Polymeric Nanocapsule for Enhanced Oil Recovery.
    Shi F; Wu J; Zhao B
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPTEM: A Model to Investigate the Factors Driving Crude Oil Pipeline Transportation Emissions.
    Choquette-Levy N; Zhong M; MacLean H; Bergerson J
    Environ Sci Technol; 2018 Jan; 52(1):337-345. PubMed ID: 29166006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.
    Wu X; Lu H; Huang K; Wu S; Qiao W
    PLoS One; 2015; 10(2):e0115299. PubMed ID: 25692790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress analysis of parallel oil and gas steel pipelines in inclined tunnels.
    Wu X; Lu H; Wu S
    Springerplus; 2015; 4():659. PubMed ID: 26543793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Gas Diffusion in Fire Working Areas of Oil and Gas Pipelines Based on Temperature Difference.
    Zheng D; Jiang Z; Qu J; Zhang M; Hao X; Zhang G; Wang J; Wang Y
    ACS Omega; 2020 Oct; 5(40):25832-25840. PubMed ID: 33073108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unavoidable Destroyed Exergy in Crude Oil Pipelines due to Wax Precipitation.
    Cheng Q; Yang J; Zheng A; Yang L; Gan Y; Liu Y
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving of the Mg-Co nanoferrites efficiency for crude oil adsorption from aqueous solution by blending them with chitosan hydrogel.
    Abdeen ZI; Ghoneim AI
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19038-19048. PubMed ID: 30406594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Dimensionless Parameters and Groups of Heat and Mass Transfer to Predict Wax Deposition in Crude Oil Pipelines.
    Agarwal JR; Torres CF; Shah S
    ACS Omega; 2021 Apr; 6(16):10578-10591. PubMed ID: 34056212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on pressure pulses in long-distance gas pipeline during the pigging process.
    Zhou J; Deng T; Peng J; Liang G; Zhou X; Gong J
    Sci Prog; 2020; 103(1):36850419884452. PubMed ID: 31829894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion Failure Mechanism of Associated Gas Transmission Pipeline.
    Zhao W; Zhang T; Wang Y; Qiao J; Wang Z
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the optimal energy consumption of oil pipeline.
    Liu E; Li C; Yang L; Liu S; Wu M; Wang D
    J Environ Biol; 2015 Jul; 36 Spec No():703-11. PubMed ID: 26387343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Correlation between Thermal Cycling and the Microstructures of X100 Pipeline Steel Laser-Welded Joints.
    Wang G; Wang J; Yin L; Hu H; Yao Z
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on Hydrate Safe Flow in Pipelines under a Swirl Flow System.
    Rao Y; Liu Z; Wang S; Li L
    ACS Omega; 2022 May; 7(19):16629-16643. PubMed ID: 35601304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array.
    Sampath S; Bhattacharya B; Aryan P; Sohn H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life Cycle Analysis of Bitumen Transportation to Refineries by Rail and Pipeline.
    Nimana B; Verma A; Di Lullo G; Rahman MM; Canter CE; Olateju B; Zhang H; Kumar A
    Environ Sci Technol; 2017 Jan; 51(1):680-691. PubMed ID: 27977152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.