These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33157141)
41. Conservation of folding and association within a family of spidroin N-terminal domains. Heiby JC; Rajab S; Rat C; Johnson CM; Neuweiler H Sci Rep; 2017 Dec; 7(1):16789. PubMed ID: 29196631 [TBL] [Abstract][Full Text] [Related]
42. Modular Assembly of a Conserved Repetitive Sequence in the Spider Eggcase Silk: From Gene to Fiber. Chen J; Hu J; Sasaki S; Naka K ACS Biomater Sci Eng; 2018 Aug; 4(8):2748-2757. PubMed ID: 33435001 [TBL] [Abstract][Full Text] [Related]
43. NMR assignments of a dynamically perturbed and dimerization inhibited N-terminal domain variant of a spider silk protein from E. australis. Goretzki B; Heiby JC; Hacker C; Neuweiler H; Hellmich UA Biomol NMR Assign; 2020 Apr; 14(1):67-71. PubMed ID: 31786743 [TBL] [Abstract][Full Text] [Related]
44. Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism. Qi X; Wang Y; Yu H; Liu R; Leppert A; Zheng Z; Zhong X; Jin Z; Wang H; Li X; Wang X; Landreh M; A Morozova-Roche L; Johansson J; Xiong S; Iashchishyn I; Chen G Small; 2023 Nov; 19(46):e2304031. PubMed ID: 37455347 [TBL] [Abstract][Full Text] [Related]
45. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Hedhammar M; Rising A; Grip S; Martinez AS; Nordling K; Casals C; Stark M; Johansson J Biochemistry; 2008 Mar; 47(11):3407-17. PubMed ID: 18293938 [TBL] [Abstract][Full Text] [Related]
47. Nanoassembly of spider silk protein mediated by intrinsically disordered regions. Li J; Yang GZ; Li X; Tan HL; Wong ZW; Jiang S; Yang D Int J Biol Macromol; 2024 Jun; 271(Pt 1):132438. PubMed ID: 38761906 [TBL] [Abstract][Full Text] [Related]
48. pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain. Jaudzems K; Askarieh G; Landreh M; Nordling K; Hedhammar M; Jörnvall H; Rising A; Knight SD; Johansson J J Mol Biol; 2012 Sep; 422(4):477-87. PubMed ID: 22706024 [TBL] [Abstract][Full Text] [Related]
49. Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). Bittencourt D; Souto BM; Verza NC; Vinecky F; Dittmar K; Silva PI; Andrade AC; da Silva FR; Lewis RV; Rech EL Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):597-606. PubMed ID: 17490908 [TBL] [Abstract][Full Text] [Related]
50. Customized Flagelliform Spidroins Form Spider Silk-like Fibers at pH 8.0 with Outstanding Tensile Strength. Li X; Qi X; Cai YM; Sun Y; Wen R; Zhang R; Johansson J; Meng Q; Chen G ACS Biomater Sci Eng; 2022 Jan; 8(1):119-127. PubMed ID: 34908395 [TBL] [Abstract][Full Text] [Related]
51. Engineered disulfides improve mechanical properties of recombinant spider silk. Grip S; Johansson J; Hedhammar M Protein Sci; 2009 May; 18(5):1012-22. PubMed ID: 19388023 [TBL] [Abstract][Full Text] [Related]
52. N-Terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. He YX; Zhang NN; Li WF; Jia N; Chen BY; Zhou K; Zhang J; Chen Y; Zhou CZ J Mol Biol; 2012 May; 418(3-4):197-207. PubMed ID: 22387468 [TBL] [Abstract][Full Text] [Related]
53. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Parent LR; Onofrei D; Xu D; Stengel D; Roehling JD; Addison JB; Forman C; Amin SA; Cherry BR; Yarger JL; Gianneschi NC; Holland GP Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11507-11512. PubMed ID: 30348773 [TBL] [Abstract][Full Text] [Related]
54. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Heidebrecht A; Eisoldt L; Diehl J; Schmidt A; Geffers M; Lang G; Scheibel T Adv Mater; 2015 Apr; 27(13):2189-94. PubMed ID: 25689835 [TBL] [Abstract][Full Text] [Related]
55. Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Garb JE; DiMauro T; Lewis RV; Hayashi CY Mol Biol Evol; 2007 Nov; 24(11):2454-64. PubMed ID: 17728281 [TBL] [Abstract][Full Text] [Related]
56. Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. Hu X; Kohler K; Falick AM; Moore AM; Jones PR; Sparkman OD; Vierra C J Biol Chem; 2005 Jun; 280(22):21220-30. PubMed ID: 15797873 [TBL] [Abstract][Full Text] [Related]
57. Review the role of terminal domains during storage and assembly of spider silk proteins. Eisoldt L; Thamm C; Scheibel T Biopolymers; 2012 Jun; 97(6):355-61. PubMed ID: 22057429 [TBL] [Abstract][Full Text] [Related]
58. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular disulfide bonds have not evolved for 380 million years. Mi J; Zhou X; Sun R; Han J Int J Biol Macromol; 2023 Sep; 249():125974. PubMed ID: 37499718 [TBL] [Abstract][Full Text] [Related]
59. Liquid-Liquid Phase Separation Primes Spider Silk Proteins for Fiber Formation via a Conditional Sticker Domain. Leppert A; Chen G; Lama D; Sahin C; Railaite V; Shilkova O; Arndt T; Marklund EG; Lane DP; Rising A; Landreh M Nano Lett; 2023 Jun; 23(12):5836-5841. PubMed ID: 37084706 [TBL] [Abstract][Full Text] [Related]
60. The role of flow in the self-assembly of dragline spider silk proteins. Herrera-Rodríguez AM; Dasanna AK; Daday C; Cruz-Chú ER; Aponte-Santamaría C; Schwarz US; Gräter F Biophys J; 2023 Nov; 122(21):4241-4253. PubMed ID: 37803828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]