These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33157195)

  • 1. Adhesion of fibroblast cells on thin films representing surfaces of polymeric scaffolds of human urethra rationalized by molecular models of integrin binding: cell adhesion on polymeric scaffolds for regenerative medicine.
    Braccini S; Pecorini G; Chiellini F; Bakos D; Miertus S; Frecer V
    J Biotechnol; 2020 Dec; 324():233-238. PubMed ID: 33157195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films.
    Ishaug-Riley SL; Okun LE; Prado G; Applegate MA; Ratcliffe A
    Biomaterials; 1999 Dec; 20(23-24):2245-56. PubMed ID: 10614931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M; Kehl D; Capulli AK; Parker KK; Hoerstrup SP; Weber B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():203-212. PubMed ID: 28697435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering.
    Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM
    Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro.
    Zhuikov VA; Akoulina EA; Chesnokova DV; Wenhao Y; Makhina TK; Demyanova IV; Zhuikova YV; Voinova VV; Belishev NV; Surmenev RA; Surmeneva MA; Bonartseva GA; Shaitan KV; Bonartsev AP
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33383857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental Comparison Research between Two Kinds of Modified Poly(lactic acid)Material In Vitro].
    Wang L; Cui Z; Xu G; Li W; Bao G; Sun Y; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):911-5. PubMed ID: 29714944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
    Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.
    Cheng CC; Lee DJ; Chen JK
    Acta Biomater; 2017 Mar; 50():476-483. PubMed ID: 28003144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair.
    Castellano D; Blanes M; Marco B; Cerrada I; Ruiz-Saurí A; Pelacho B; Araña M; Montero JA; Cambra V; Prosper F; Sepúlveda P
    Stem Cells Dev; 2014 Jul; 23(13):1479-90. PubMed ID: 24564648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.
    Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces.
    Lee SJ; Khang G; Lee YM; Lee HB
    J Biomater Sci Polym Ed; 2002; 13(2):197-212. PubMed ID: 12022750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials.
    Davidenko N; Hamaia S; Bax DV; Malcor JD; Schuster CF; Gullberg D; Farndale RW; Best SM; Cameron RE
    Acta Biomater; 2018 Jan; 65():88-101. PubMed ID: 29107054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of polymeric electrospun scaffolds via a potent and high-affinity integrin α4β1 ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering.
    Hao D; Ma B; He C; Liu R; Farmer DL; Lam KS; Wang A
    J Mater Chem B; 2020 Feb; 8(8):1649-1659. PubMed ID: 32011618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel genipin-collagen immobilization of polylactic acid (PLA) fibers for use as tissue engineering scaffolds.
    Tambe N; Di J; Zhang Z; Bernacki S; El-Shafei A; King MW
    J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1188-97. PubMed ID: 25308088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.