These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 33157282)
1. In vivo modification of the goat mammary gland glycosylation pathway. Leiva-Carrasco MJ; Jiménez-Chávez S; Harvey DJ; Parra NC; Tavares KC; Camacho F; González A; Sánchez O; Montesino R; Toledo JR N Biotechnol; 2021 Mar; 61():11-21. PubMed ID: 33157282 [TBL] [Abstract][Full Text] [Related]
2. Post-translational modification of a chimeric EPO-Fc hormone is more important than its molecular size in defining its in vivo hematopoietic activity. Salgado ER; Montesino R; Jiménez SP; González M; Hugues F; Cabezas OI; Maura-Perez R; Saavedra P; Lamazares E; Salas-Burgos A; Vera JC; Sánchez O; Toledo JR Biochim Biophys Acta; 2015 Sep; 1850(9):1685-93. PubMed ID: 25960389 [TBL] [Abstract][Full Text] [Related]
3. Substrate Preference and Interplay of Fucosyltransferase 8 and N-Acetylglucosaminyltransferases. Tseng TH; Lin TW; Chen CY; Chen CH; Lin JL; Hsu TL; Wong CH J Am Chem Soc; 2017 Jul; 139(28):9431-9434. PubMed ID: 28678517 [TBL] [Abstract][Full Text] [Related]
4. Dynamic control of oligosaccharide modification in the mammary gland: linking recombinant human erythropoietin functional analysis of transgenic mouse milk-derived hEPO. Kwon DN; Song H; Park JY; Lee SY; Cho SK; Kang SJ; Jang JS; Seo HG; Kim JH Transgenic Res; 2006 Feb; 15(1):37-55. PubMed ID: 16475009 [TBL] [Abstract][Full Text] [Related]
5. N-acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147. Fan J; Wang S; Yu S; He J; Zheng W; Zhang J Glycoconj J; 2012 Aug; 29(5-6):323-34. PubMed ID: 22736280 [TBL] [Abstract][Full Text] [Related]
6. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells. Wang Q; Yang G; Wang T; Yang W; Betenbaugh MJ; Zhang H Biotechnol Bioeng; 2019 Sep; 116(9):2303-2315. PubMed ID: 31062865 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Park JH; Wang Z; Jeong HJ; Park HH; Kim BG; Tan WS; Choi SS; Park TH Appl Microbiol Biotechnol; 2012 Nov; 96(3):671-83. PubMed ID: 22714097 [TBL] [Abstract][Full Text] [Related]
8. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Goh JS; Zhang P; Chan KF; Lee MM; Lim SF; Song Z Metab Eng; 2010 Jul; 12(4):360-8. PubMed ID: 20346410 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk. Gil GC; Velander WH; Van Cott KE Glycobiology; 2008 Jul; 18(7):526-39. PubMed ID: 18456721 [TBL] [Abstract][Full Text] [Related]
12. Examination of differential glycoprotein preferences of N-acetylglucosaminyltransferase-IV isozymes a and b. Osada N; Nagae M; Nakano M; Hirata T; Kizuka Y J Biol Chem; 2022 Sep; 298(9):102400. PubMed ID: 35988645 [TBL] [Abstract][Full Text] [Related]
13. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Goh JS; Liu Y; Liu H; Chan KF; Wan C; Teo G; Zhou X; Xie F; Zhang P; Zhang Y; Song Z Biotechnol J; 2014 Jan; 9(1):100-9. PubMed ID: 24166780 [TBL] [Abstract][Full Text] [Related]
14. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. Song W; Isaji T; Nakano M; Liang C; Fukuda T; Gu J FASEB J; 2022 Feb; 36(2):e22149. PubMed ID: 34981577 [TBL] [Abstract][Full Text] [Related]
16. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans. Yang Q; Wang LX J Biol Chem; 2016 May; 291(21):11064-71. PubMed ID: 27008861 [TBL] [Abstract][Full Text] [Related]
17. Regulation of intracellular activity of N-glycan branching enzymes in mammals. Kizuka Y J Biol Chem; 2024 Jul; 300(7):107471. PubMed ID: 38879010 [TBL] [Abstract][Full Text] [Related]
18. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505 [TBL] [Abstract][Full Text] [Related]
19. Differential in vitro and in vivo glycosylation of human erythropoietin expressed in adenovirally transduced mouse mammary epithelial cells. Toledo JR; Sánchez O; Montesino Seguí R; Fernández García Y; Rodríguez MP; Cremata JA Biochim Biophys Acta; 2005 Oct; 1726(1):48-56. PubMed ID: 16098677 [TBL] [Abstract][Full Text] [Related]
20. Expression and characterization of human N-acetylglucosaminyltransferases and alpha2,3-sialyltransferase in insect cells for in vitro glycosylation of recombinant erythropoietin. Kim NY; Kim HG; Kim YH; Chung IS; Yang JM J Microbiol Biotechnol; 2008 Feb; 18(2):383-91. PubMed ID: 18309288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]