These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33157545)

  • 1. Aerodynamic efficiency of gliding birds vs comparable UAVs: a review.
    Harvey C; Inman DJ
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33157545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance.
    Rader JA; Hedrick TL; He Y; Waldrop LD
    Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control.
    Harvey C; Baliga VB; Goates CD; Hunsaker DF; Inman DJ
    J R Soc Interface; 2021 Jun; 18(179):20210132. PubMed ID: 34102085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian whiffling-inspired gaps provide an alternative method for roll control.
    Sigrest P; Inman DJ
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Morphology of Gliding Flight I: Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies.
    Waldrop LD; He Y; Hedrick TL; Rader JA
    Integr Comp Biol; 2020 Nov; 60(5):1283-1296. PubMed ID: 32766844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.
    Usherwood JR
    J Theor Biol; 2016 Nov; 408():42-52. PubMed ID: 27418386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanical model of wing and theoretical estimate of taper factor for three gliding birds.
    Zahedi MS; Khan MY
    J Biosci; 2007 Mar; 32(2):351-61. PubMed ID: 17435326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual manipulation of tail postures of a gliding barn owl (
    Song J; Cheney JA; Bomphrey RJ; Usherwood JR
    J R Soc Interface; 2022 Feb; 19(187):20210710. PubMed ID: 35135296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field estimates of body drag coefficient on the basis of dives in passerine birds.
    Hedenström A; Liechti F
    J Exp Biol; 2001 Mar; 204(Pt 6):1167-75. PubMed ID: 11222132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing morphing allows gulls to modulate static pitch stability during gliding.
    Harvey C; Baliga VB; Lavoie P; Altshuler DL
    J R Soc Interface; 2019 Jan; 16(150):20180641. PubMed ID: 30958156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive aeroelastic deflection of avian primary feathers.
    Klaassen van Oorschot B; Choroszucha R; Tobalske BW
    Bioinspir Biomim; 2020 Jul; 15(5):056008. PubMed ID: 32470956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.