These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33157871)

  • 1. Robot-induced perturbations of human walking reveal a selective generation of motor adaptation.
    Cajigas I; Koenig A; Severini G; Smith M; Bonato P
    Sci Robot; 2017 May; 2(6):. PubMed ID: 33157871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation.
    Severini G; Koenig A; Adans-Dester C; Cajigas I; Cheung VCK; Bonato P
    Sci Rep; 2020 Mar; 10(1):5104. PubMed ID: 32214125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic cost of walking balance control and adaptation in young adults.
    Ahuja S; Franz JR
    Gait Posture; 2022 Jul; 96():190-194. PubMed ID: 35696824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic cost of walking with increased step variability.
    O'Connor SM; Xu HZ; Kuo AD
    Gait Posture; 2012 May; 36(1):102-7. PubMed ID: 22459093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediolateral damping of an overhead body weight support system assists stability during treadmill walking.
    Bannwart M; Bayer SL; König Ignasiak N; Bolliger M; Rauter G; Easthope CA
    J Neuroeng Rehabil; 2020 Aug; 17(1):108. PubMed ID: 32778127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric gait patterns alter the reactive control of intersegmental coordination patterns in the sagittal plane during walking.
    Liu C; Finley JM
    PLoS One; 2020; 15(5):e0224187. PubMed ID: 32437458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic gait training improves motor skills and quality of life in hereditary spastic paraplegia.
    Bertolucci F; Di Martino S; Orsucci D; Ienco EC; Siciliano G; Rossi B; Mancuso M; Chisari C
    NeuroRehabilitation; 2015; 36(1):93-9. PubMed ID: 25547770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural dependence of human locomotion during gait initiation.
    Mille ML; Simoneau M; Rogers MW
    J Neurophysiol; 2014 Dec; 112(12):3095-103. PubMed ID: 25231611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel methodology for assessing total recovery time in response to unexpected perturbations while walking.
    Rosenblum U; Kribus-Shmiel L; Zeilig G; Bahat Y; Kimel-Naor S; Melzer I; Plotnik M
    PLoS One; 2020; 15(6):e0233510. PubMed ID: 32492029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic stability during split-belt walking and the relationship with step length symmetry.
    Darter BJ; Labrecque BA; Perera RA
    Gait Posture; 2018 May; 62():86-91. PubMed ID: 29533870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepping strategies for regulating gait adaptability and stability.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    J Biomech; 2013 Mar; 46(5):905-11. PubMed ID: 23332822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.